Artículos relacionados a Advances in Face Presentation Attack Detection (Synthesis...

Advances in Face Presentation Attack Detection (Synthesis Lectures on Computer Vision) - Tapa dura

 
9783031329050: Advances in Face Presentation Attack Detection (Synthesis Lectures on Computer Vision)

Sinopsis

This book revises and expands upon the prior edition of Multi-Modal Face Presentation Attack Detection. The authors begin with fundamental and foundational information on face spoofing attack detection, explaining why the computer vision community has intensively studied it for the last decade. The authors also discuss the reasons that cause face anti-spoofing to be essential for preventing security breaches in face recognition systems. In addition, the book describes the factors that make it difficult to design effective methods of face presentation attack detection challenges. The book presents a thorough review and evaluation of current techniques and identifies those that have achieved the highest level of performance in a series of ChaLearn face anti-spoofing challenges at CVPR and ICCV. The authors also highlight directions for future research in face anti-spoofing that would lead to progress in the field. Additional analysis, new methodologies, and a more comprehensive survey of solutions are included in this new edition.

"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca del autor

Jun Wan (IEEE Senior Member), Ph.D., is an Associate Professor at the Chinese Academy of Sciences (CASIA) Institute of Automation, where he has been a faculty member since 2015. Dr. Wan earned his Ph.D. from Beijing Jiaotong University in 2015. He served as the Co-Editor for special issues in the IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), International Journal of Computer Vision (IJCV), and the IEEE Transactions on Biometrics, Behavior, and Identity Science (TBIOM). He is also an Associate Editor of IET Biometrics. He has been involved in the organization of several face anti-spoofing challenges in computer vision collocated with top venues.  He has served as competition chair of CVPR2019, CVPR2020, ICCV2021, and CVPR2023.  His research interests include computer vision including face analysis, gesture recognition, and sign language translation. Guodong Guo, Ph.D., is affiliated with West Virginia University. He earned his Ph.D. in computer science from the University of Wisconsin, Madison. Previously, he was the Head of the Institute of Deep Learning at Baidu Research. He has written and edited four books and published over 200 technical papers. Dr. Guo is an Associate Editor of IEEE Transactions on Affective Computing, Journal of Visual Communication and Image Representation, and serves on the editorial board of IET Biometrics. His research interests include computer vision, biometrics, machine learning, and multimedia.
Sergio Escalera, Ph.D., is a Full Professor with the Department of Mathematics and Informatics at Universitat de Barcelona. He earned his Ph.D. in multiclass visual categorization systems from the Computer Vision Center, UAB, where he is still a member. In addition, he leads the Human Pose Recovery and Behavior Analysis Group and is a Distinguished Professor with Aalborg University. Dr. Escalera serves as the Vice-President of ChaLearn Challenges in Machine Learning and as the chair of IAPR TC-12: Multimedia and Visual Information Systems. He co-created the Codalab open-source platform for challenges organization. He is also a Series Editor of The Springer Series on Challenges in Machine Learning. His research interests include automatic analysis of humans from visual and multimodal data, with special interest in inclusive, transparent, and fair affective computing and people characterization. Hugo Jair Escalante is a Senior Researcher Scientist at INAOE, Mexico, a membof the board of directors of ChaLearn USA, and Chair officer of the IAPR Technical Committee 12. er He is a regular member of the Mexican Academy of Sciences (AMC), the Mexican Academy of Computing (AMEXCOMP) and Mexican System of Researchers Level II (SNI). He was editor of the Springer Series on Challenges in Machine Learning 2017-2013 and is Associate  Editor of IEEE Transactions on Affective Computing. He has been involved in the organization of several challenges in machine learning and computer vision collocated with top venues. He has served as competition chair of NeurIPS2020, FG2020 and ICPR2020, NeurIPS2019, PAKDD2019-2018, IJCNN2019. His research interests are on machine learning, challenge organization, and its applications on language and vision.
Stan Z. Li (IEEE Fellow, IAPR Fellow) is a Chair Professor of artificial intelligence  at Westlake University. He received his Ph.D. degree from Surrey University, UK, in 1991. He was awarded Honorary Doctorate of Oulu University, Finland, in 2013. He was the director of the Center for Biometrics and Security Research (CBSR) , Chinese Academy of Sciences, 2004~2019. He worked at Microsoft Research Asia as a Research Lead, 2000~2004. Prior to that, he was an associate professor (tenure) at Nanyang Technological University, Singapore. He joined Westlake University as a Chair Professor of Artificial Intelligence in February 2019. Stan Z. Li has published over 400 papers in international journals and conferences, authored, and edited 10 books, with over 60,000 Google Scholar citations. Among these are Markov Random Field Models in Image Analysis (Springer), Handbook of Face Recognition (Springer) and Encyclopedia of Biometrics (Springer). He served as an associate editor of IEEE Transactions on Pattern Analysis and Machine Intelligence and organized more than 100 international conferences or workshops. His current research interests include AI fundamental research and AI for sciences.

De la contraportada

This book revises and expands upon the prior edition of Multi-Modal Face Presentation Attack Detection. The authors begin with fundamental and foundational information on face spoofing attack detection, explaining why the computer vision community has intensively studied it for the last decade. The authors also discuss the reasons that cause face anti-spoofing to be essential for preventing security breaches in face recognition systems. In addition, the book describes the factors that make it difficult to design effective methods of face presentation attack detection challenges. The book presents a thorough review and evaluation of current techniques and identifies those that have achieved the highest level of performance in a series of ChaLearn face anti-spoofing challenges at CVPR and ICCV. The authors also highlight directions for future research in face anti-spoofing that would lead to progress in the field. Additional analysis, new methodologies, and a more comprehensive survey of solutions are included in this new edition.

"Sobre este título" puede pertenecer a otra edición de este libro.

  • EditorialSpringer-Verlag GmbH
  • Año de publicación2023
  • ISBN 10 3031329058
  • ISBN 13 9783031329050
  • EncuadernaciónTapa dura
  • IdiomaInglés
  • Número de edición2
  • Número de páginas120
  • Contacto del fabricanteno disponible

Comprar usado

Condición: Como Nuevo
Zustandsbeschreibung: leichte Lagerspuren...
Ver este artículo

EUR 9,50 gastos de envío desde Alemania a España

Destinos, gastos y plazos de envío

Comprar nuevo

Ver este artículo

EUR 11,00 gastos de envío desde Alemania a España

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9783031329081: Advances in Face Presentation Attack Detection (Synthesis Lectures on Computer Vision)

Edición Destacada

ISBN 10:  3031329082 ISBN 13:  9783031329081
Editorial: Springer-Verlag GmbH, 2024
Tapa blanda

Resultados de la búsqueda para Advances in Face Presentation Attack Detection (Synthesis...

Imagen del vendedor

Wan, Jun; Guo, Guodong; Escalera, Sergio; Escalante, Hugo Jair; Li, Stan Z.
Publicado por Springer-Verlag, 2023
ISBN 10: 3031329058 ISBN 13: 9783031329050
Antiguo o usado Tapa dura

Librería: SKULIMA Wiss. Versandbuchhandlung, Westhofen, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: Wie Neu. Zustandsbeschreibung: leichte Lagerspuren/minor shelfwear. By Jun Wan, Guodong Guo, Sergio Escalera, Hugo Jair Escalante and Stan Z. Li. The book presents a thorough review and evaluation of current techniques and identifies those that have achieved the highest level of performance in a series of ChaLearn face anti-spoofing challenges at CVPR and ICCV. The authors also highlight directions for future research in face-anti-spoofing that would lead to progress in the field. Second Edition. VIII,111 Seiten mit 48 Farb- und 52 s/w-Abb., gebunden (Synthesis Lectures on Computer Vision/Springer-Verlag 2023). Statt EUR 42,79. Gewicht: 344 g - Gebunden/Gebundene Ausgabe - Sprache: Englisch. Nº de ref. del artículo: 116308

Contactar al vendedor

Comprar usado

EUR 32,70
Convertir moneda
Gastos de envío: EUR 9,50
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Jun Wan
ISBN 10: 3031329058 ISBN 13: 9783031329050
Nuevo Tapa dura
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book revises and expands upon the prior edition of Multi-Modal Face Presentation Attack Detection. The authors begin with fundamental and foundational information on face spoofing attack detection, explaining why the computer vision community has intensively studied it for the last decade. The authors also discuss the reasons that cause face anti-spoofing to be essential for preventing security breaches in face recognition systems. In addition, the book describes the factors that make it difficult to design effective methods of face presentation attack detection challenges. The book presents a thorough review and evaluation of current techniques and identifies those that have achieved the highest level of performance in a series of ChaLearn face anti-spoofing challenges at CVPR and ICCV. The authors also highlight directions for future research in face anti-spoofing that would lead to progress in the field. Additional analysis, new methodologies, and a more comprehensive survey of solutions are included in this new edition. 120 pp. Englisch. Nº de ref. del artículo: 9783031329050

Contactar al vendedor

Comprar nuevo

EUR 42,79
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Jun Wan
Publicado por Springer International Publishing, 2023
ISBN 10: 3031329058 ISBN 13: 9783031329050
Nuevo Tapa dura

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book revises and expands upon the prior edition of Multi-Modal Face Presentation Attack Detection. The authors begin with fundamental and foundational information on face spoofing attack detection, explaining why the computer vision community has intensively studied it for the last decade. The authors also discuss the reasons that cause face anti-spoofing to be essential for preventing security breaches in face recognition systems. In addition, the book describes the factors that make it difficult to design effective methods of face presentation attack detection challenges. The book presents a thorough review and evaluation of current techniques and identifies those that have achieved the highest level of performance in a series of ChaLearn face anti-spoofing challenges at CVPR and ICCV. The authors also highlight directions for future research in face anti-spoofing that would lead to progress in the field. Additional analysis, new methodologies, and a more comprehensive survey of solutions are included in this new edition. Nº de ref. del artículo: 9783031329050

Contactar al vendedor

Comprar nuevo

EUR 42,79
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Wan, Jun|Guo, Guodong|Escalera, Sergio|Escalante, Hugo Jair|Li, Stan Z.
ISBN 10: 3031329058 ISBN 13: 9783031329050
Nuevo Tapa dura
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book revises and expands upon the prior edition of Multi-Modal Face Presentation Attack Detection. The authors begin with fundamental and foundational information on face spoofing attack detection, explaining why the computer vision community ha. Nº de ref. del artículo: 851835627

Contactar al vendedor

Comprar nuevo

EUR 38,69
Convertir moneda
Gastos de envío: EUR 19,49
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Wan, Jun; Guo, Guodong; Escalera, Sergio; Escalante, Hugo Jair; Li, Stan Z.
Publicado por Springer, 2023
ISBN 10: 3031329058 ISBN 13: 9783031329050
Antiguo o usado Tapa dura

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 46387002

Contactar al vendedor

Comprar usado

EUR 46,23
Convertir moneda
Gastos de envío: EUR 17,34
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Wan, Jun; Guo, Guodong; Escalera, Sergio; Escalante, Hugo Jair; Li, Stan Z.
Publicado por Springer, 2023
ISBN 10: 3031329058 ISBN 13: 9783031329050
Nuevo Tapa dura

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 46387002-n

Contactar al vendedor

Comprar nuevo

EUR 52,13
Convertir moneda
Gastos de envío: EUR 17,34
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Wan, Jun/ Guo, Guodong/ Escalera, Sergio/ Escalante, Hugo Jair/ Li, Stan Z.
Publicado por Springer-Nature New York Inc, 2023
ISBN 10: 3031329058 ISBN 13: 9783031329050
Nuevo Tapa dura

Librería: Revaluation Books, Exeter, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: Brand New. 2nd edition. 119 pages. 9.45x6.61x0.51 inches. In Stock. Nº de ref. del artículo: x-3031329058

Contactar al vendedor

Comprar nuevo

EUR 65,16
Convertir moneda
Gastos de envío: EUR 11,68
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Jun Wan
ISBN 10: 3031329058 ISBN 13: 9783031329050
Nuevo Tapa dura

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. Neuware -This book revises and expands upon the prior edition of Multi-Modal Face Presentation Attack Detection. The authors begin with fundamental and foundational information on face spoofing attack detection, explaining why the computer vision community has intensively studied it for the last decade. The authors also discuss the reasons that cause face anti-spoofing to be essential for preventing security breaches in face recognition systems. In addition, the book describes the factors that make it difficult to design effective methods of face presentation attack detection challenges. The book presents a thorough review and evaluation of current techniques and identifies those that have achieved the highest level of performance in a series of ChaLearn face anti-spoofing challenges at CVPR and ICCV. The authors also highlight directions for future research in face anti-spoofing that would lead to progress in the field. Additional analysis, new methodologies, and a more comprehensive survey of solutions are included in this new edition.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 120 pp. Englisch. Nº de ref. del artículo: 9783031329050

Contactar al vendedor

Comprar nuevo

EUR 42,79
Convertir moneda
Gastos de envío: EUR 35,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Jun Wan
ISBN 10: 3031329058 ISBN 13: 9783031329050
Nuevo Tapa dura

Librería: Grand Eagle Retail, Fairfield, OH, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: new. Hardcover. This book revises and expands upon the prior edition of Multi-Modal Face Presentation Attack Detection. The authors begin with fundamental and foundational information on face spoofing attack detection, explaining why the computer vision community has intensively studied it for the last decade. The authors also discuss the reasons that cause face anti-spoofing to be essential for preventing security breaches in face recognition systems. In addition, the book describes the factors that make it difficult to design effective methods of face presentation attack detection challenges. The book presents a thorough review and evaluation of current techniques and identifies those that have achieved the highest level of performance in a series of ChaLearn face anti-spoofing challenges at CVPR and ICCV. The authors also highlight directions for future research in face anti-spoofing that would lead to progress in the field. Additional analysis, new methodologies, and a more comprehensive survey of solutions are included in this new edition. This book revises and expands upon the prior edition of Multi-Modal Face Presentation Attack Detection. The authors also discuss the reasons that cause face anti-spoofing to be essential for preventing security breaches in face recognition systems. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9783031329050

Contactar al vendedor

Comprar nuevo

EUR 54,50
Convertir moneda
Gastos de envío: EUR 65,07
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito