This textbook aims to point out the most important principles of data analysis from the mathematical point of view. Specifically, it selected these questions for exploring: Which are the principles necessary to understand the implications of an application, and which are necessary to understand the conditions for the success of methods used? Theory is presented only to the degree necessary to apply it properly, striving for the balance between excessive complexity and oversimplification. Its primary focus is on principles crucial for application success.
Topics and features:
Although this core textbook aims directly at students of computer science and/or data science, it will be of real appeal, too, to researchers in the field who want to gain a proper understanding of the mathematical foundations “beyond” the sole computing experience.
"Sinopsis" puede pertenecer a otra edición de este libro.
Tomas Hrycej is a pioneer in the field of artificial intelligence and neural networks, having worked in this field since the 1980s. As an example of his pioneering deeds, he worked in the 1990s at Daimler Research on self-driving cars. In his doctoral thesis, he dealt with modular learning concepts in neural networks. His most important research stations were Daimler AG, Bosch GmbH, the University of Passau and currently the University of St. Gallen. He is the author of three monographs: Neurocontrol - Towards an Industrial Control Methodology, Modular Learning in Neural Networks (both Wiley-Interscience) and Robust Control ("Robuste Regelung", Springer), as well as about 60 publications in journals and conference proceedings.
Bernhard Bermeitinger is a research assistant at the Chair of Data Science and Natural Language Processing and is currently working on his PhD in Deep Learning.
Although it is widely recognized that analyzing large volumes of data by intelligent methods may provide highly valuable insights, the practical success of data science has led to the development of a sometimes confusing variety of methods, approaches and views.
This practical textbook aims to point out the most important principles of data analysis from the mathematical point of view. Specifically, it selected these questions for exploring: Which are the principles necessary to understand the implications of an application, and which are necessary to understand the conditions for the success of methods used? Theory is presented only to the degree necessary to apply it properly, striving for the balance between excessive complexity and oversimplification. Its primary focus is on principles crucial for application success.Topics and features:
Although this core textbook aims directly at students of computer science and/or data science, it will be of real appeal, too, to researchers in the field who want to gain a proper understanding of the mathematical foundations “beyond” the sole computing experience.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 9,95 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoLibrería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. 1st Edition. Nº de ref. del artículo: 26396295637
Cantidad disponible: 1 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Nº de ref. del artículo: 401162762
Cantidad disponible: 1 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. Nº de ref. del artículo: 18396295647
Cantidad disponible: 1 disponibles
Librería: moluna, Greven, Alemania
Gebunden. Condición: New. Nº de ref. del artículo: 706732223
Cantidad disponible: Más de 20 disponibles
Librería: Basi6 International, Irving, TX, Estados Unidos de America
Condición: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Nº de ref. del artículo: ABEJUNE24-261209
Cantidad disponible: 2 disponibles
Librería: Basi6 International, Irving, TX, Estados Unidos de America
Condición: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Nº de ref. del artículo: ABEJUNE24-14009
Cantidad disponible: 1 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This textbook aims to point out the most important principles of data analysis from the mathematical point of view. Specifically, it selected these questions for exploring: Which are the principles necessary to understand the implications of an application, and which are necessary to understand the conditions for the success of methods used Theory is presented only to the degree necessary to apply it properly, striving for the balance between excessive complexity and oversimplification. Its primary focus is on principles crucial for application success.Topics and features:Focuses on approaches supported by mathematical arguments, rather than sole computing experiencesInvestigates conditions under which numerical algorithms used in data science operate, and what performance can be expected from themConsiders key data science problems: problem formulation including optimality measure; learning and generalization in relationships to training set size and number of free parameters; and convergence of numerical algorithmsExamines original mathematical disciplines (statistics, numerical mathematics, system theory) as they are specifically relevant to a given problemAddresses the trade-off between model size and volume of data available for its identification and its consequences for model parametrizationInvestigates the mathematical principles involves with natural language processing and computer visionKeeps subject coverage intentionally compact, focusing on key issues of each topic to encourage full comprehension of the entire bookAlthough this core textbook aims directly at students of computer science and/or data science, it will be of real appeal, too, to researchers in the field who want to gain a proper understanding of the mathematical foundations 'beyond' the sole computing experience. 228 pp. Englisch. Nº de ref. del artículo: 9783031190735
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This textbook aims to point out the most important principles of data analysis from the mathematical point of view. Specifically, it selected these questions for exploring: Which are the principles necessary to understand the implications of an application, and which are necessary to understand the conditions for the success of methods used Theory is presented only to the degree necessary to apply it properly, striving for the balance between excessive complexity and oversimplification. Its primary focus is on principles crucial for application success.Topics and features:Focuses on approaches supported by mathematical arguments, rather than sole computing experiencesInvestigates conditions under which numerical algorithms used in data science operate, and what performance can be expected from themConsiders key data science problems: problem formulation including optimality measure; learning and generalization in relationships to training set size and number of free parameters; and convergence of numerical algorithmsExamines original mathematical disciplines (statistics, numerical mathematics, system theory) as they are specifically relevant to a given problemAddresses the trade-off between model size and volume of data available for its identification and its consequences for model parametrizationInvestigates the mathematical principles involves with natural language processing and computer visionKeeps subject coverage intentionally compact, focusing on key issues of each topic to encourage full comprehension of the entire bookAlthough this core textbook aims directly at students of computer science and/or data science, it will be of real appeal, too, to researchers in the field who want to gain a proper understanding of the mathematical foundations 'beyond' the sole computing experience. Nº de ref. del artículo: 9783031190735
Cantidad disponible: 1 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Buch. Condición: Neu. Neuware -This textbook aims to point out the most important principles of data analysis from the mathematical point of view. Specifically, it selected these questions for exploring: Which are the principles necessary to understand the implications of an application, and which are necessary to understand the conditions for the success of methods used Theory is presented only to the degree necessary to apply it properly, striving for the balance between excessive complexity and oversimplification. Its primary focus is on principles crucial for application success.Topics and features:Focuses on approaches supported by mathematical arguments, rather than sole computing experiencesInvestigates conditions under which numerical algorithms used in data science operate, and what performance can be expected from themConsiders key data science problems: problem formulation including optimality measure; learning and generalization in relationships to training set size and number of free parameters; and convergence of numerical algorithmsExamines original mathematical disciplines (statistics, numerical mathematics, system theory) as they are specifically relevant to a given problemAddresses the trade-off between model size and volume of data available for its identification and its consequences for model parametrizationInvestigates the mathematical principles involves with natural language processing and computer visionKeeps subject coverage intentionally compact, focusing on key issues of each topic to encourage full comprehension of the entire bookAlthough this core textbook aims directly at students of computer science and/or data science, it will be of real appeal, too, to researchers in the field who want to gain a proper understanding of the mathematical foundations ¿beyond¿ the sole computing experience.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 228 pp. Englisch. Nº de ref. del artículo: 9783031190735
Cantidad disponible: 2 disponibles
Librería: TextbookRush, Grandview Heights, OH, Estados Unidos de America
Condición: Brand New. Ships SAME or NEXT business day. We Ship to APO/FPO addr. Choose EXPEDITED shipping and receive in 2-5 business days within the United States. See our member profile for customer support contact info. We have an easy return policy. Nº de ref. del artículo: 52498145
Cantidad disponible: 1 disponibles