Optimization Algorithms for Distributed Machine Learning (Synthesis Lectures on Learning, Networks, and Algorithms) - Tapa dura

Joshi, Gauri

 
9783031190667: Optimization Algorithms for Distributed Machine Learning (Synthesis Lectures on Learning, Networks, and Algorithms)

Sinopsis

The author discusses several algorithms that improve the scalability and communication efficiency of synchronous SGD, such as asynchronous SGD, local-update SGD, quantized and sparsified SGD, and decentralized SGD.

"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca del autor

Gauri Joshi, Ph.D., is an Associate Professor in the ECE department at Carnegie Mellon University. Dr. Joshi completed her Ph.D. from MIT EECS. Her current research is on designing algorithms for federated learning, distributed optimization, and parallel computing. Her awards and honors include being named as one of MIT Technology Review's 35 Innovators under 35 (2022), the NSF CAREER Award (2021), the ACM SIGMETRICS Best Paper Award (2020), Best Thesis Prize in Computer science at MIT (2012), and Institute Gold Medal of IIT Bombay (2010).

"Sobre este título" puede pertenecer a otra edición de este libro.

Otras ediciones populares con el mismo título

9783031190698: Optimization Algorithms for Distributed Machine Learning (Synthesis Lectures on Learning, Networks, and Algorithms)

Edición Destacada

ISBN 10:  3031190696 ISBN 13:  9783031190698
Editorial: Springer, 2023
Tapa blanda