Artículos relacionados a Energy Efficient Computation Offloading in Mobile Edge...

Energy Efficient Computation Offloading in Mobile Edge Computing (Wireless Networks) - Tapa dura

 
9783031168215: Energy Efficient Computation Offloading in Mobile Edge Computing (Wireless Networks)

Sinopsis

This book provides a comprehensive review and in-depth discussion of the state-of-the-art research literature and propose energy-efficient computation offloading and resources management for mobile edge computing (MEC), covering task offloading, channel allocation, frequency scaling and resource scheduling. Since the task arrival process and channel conditions are stochastic and dynamic, the authors first propose an energy efficient dynamic computing offloading scheme to minimize energy consumption and guarantee end devices' delay performance. To further improve energy efficiency combined with tail energy, the authors present a computation offloading and frequency scaling scheme to jointly deal with the stochastic task allocation and CPU-cycle frequency scaling for minimal energy consumption while guaranteeing the system stability. They also investigate delay-aware and energy-efficient computation offloading in a dynamic MEC system with multiple edge servers, and introduce an end-to-end deep reinforcement learning (DRL) approach to select the best edge server for offloading and allocate the optimal computational resource such that the expected long-term utility is maximized. Finally, the authors study the multi-task computation offloading in multi-access MEC via non-orthogonal multiple access (NOMA) and accounting for the time-varying channel conditions. An online algorithm based on DRL is proposed to efficiently learn the near-optimal offloading solutions.

Researchers working in  mobile edge computing, task offloading and resource management, as well as advanced level students in electrical and computer engineering, telecommunications, computer science or other related disciplines will find this book useful as a reference. Professionals working within these related fields will also benefit from this book.

 

"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca del autor

Ying Chen received the BEng degree from the School of Computer Science, Beijing University of Posts and Telecommunications, Beijing, China, in 2012, and the PhD degree in computer science and technology from Tsinghua University, Beijing, in 2017. She is currently an associate professor with Computer School, Beijing Information Science and Technology University, Beijing. She was a joint PhD student in University of Waterloo from 2015 to 2016. She is the recipient of the Best Paper Award at IEEE SmartIoT 2019, 2016 Google Ph. D Fellowship Award and 2014 Google Anita Borg Award, respectively. She is the TPC member of IEEE HPCC, and PC member of IEEE Cloud, CollaborateCom, IEEE CPSCom, CSS, etc. She is also the reviewer of several journals such as IEEE Transactions on Dependable and Secure Computing, IEEE Internet of Things Journal, IEEE Transactions on Computers, IEEE Transactions on Cloud Computing, IEEE Transactions on Services Computing, etc. Her current research interests include mobile edge computing, wireless networks and communications, machine learning, etc.
Ning Zhang received the B.Sc. degree from Beijing Jiaotong University, Beijing, China, the M.Sc. degree from Beijing University of Posts and Telecommunications, Beijing, China, and the Ph.D. degree from the University of Waterloo, Waterloo, ON, Canada, in 2007, 2010, and 2015, respectively. After that, he was a postdoc research fellow at University of Waterloo and University of Toronto, Canada, respectively. He is now an Associate Professor in the Department of Electrical and Computer Engineering at University of Windsor, Canada. His research interests include connected vehicles, mobile edge computing, wireless networking, and machine learning. He has published over 180 refereed papers in international journals and conferences. He is a Highly Cited Researcher and on the World's Top 2% Scientists list by Stanford University. He serves as an Associate Editor of IEEE Internet of Things Journal, IEEE Transactions on Cognitive Communications and Networking, and IEEE Systems Journal; and a Guest Editor of several international journals, such as IEEE Wireless Communications, IEEE Transactions on Industrial Informatics, IEEE Transactions on Intelligent Transportation Systems, IEEE Internet of Things Journal, and IEEE Transactions on Cognitive Communications and Networking. He also serves/served as a general chair for IEEE SAGC 2021, a TPC chair for IEEE VTC-Fall 2021 and IEEE SAGC 2020, a track chair for several international conferences including IEEE ICC 2022, IEEE IECON 2021, CollaborateCom 2021, IEEE VTC 2020, AICON 2020 and CollaborateCom 2020, and a co-chair for numerous international workshops.  He received an NSERC PDF award in 2015 and 6 Best Paper Awards from IEEE Globecom in 2014, IEEE WCSP in 2015, IEEE ICC in 2019, IEEE ICCC in 2019, IEEE Technical Committee on Transmission Access and Optical Systems in 2019, and Journal of Communications and Information Networks in 2018, respectively. He has been a senior member of IEEE since 2018.
Yuan Wu received the B.Sc. degree and the M.Sc. degree from Zhejiang University in 2004 and 2006, respectively, and received the PhD degree in Electronic and Computer Engineering from the Hong Kong University of Science and Technology in 2010. He is currently an Associate Professor with the State Key Laboratory of Internet of Things for Smart City, University of Macau and also with the Department of Computer and Information Science, University of Macau. Prior to that, he was a Full Professor with the College of Information Engineering, Zhejiang University of Technology, Hangzhou, China. During 2016-2017, he was a visiting scholar with Department of Electrical and Computer Engineering, University of Waterloo. His research interests include resource management for wireless networks, green communications and computing, mobile edge computing, and smartgrids. He was a recipient of the Best Paper Award from the IEEE International Conference on Communications in 2016, the Best Paper Award from IEEE Technical Committee on Green Communications and Computing in 2017, and the Best Paper Award from the International Wireless Communications and Mobile Computing Conference in 2021. Dr. Wu served as the guest editors of IEEE Communications Magazine, IEEE Network, IEEE Transactions on Industrial Informatics, and IET Communications. He is currently on the Editorial Boards of IEEE Internet of Things Journal, IEEE Open Journal of the Communications Society, and China Communications. Dr, Wu has been a senior member of IEEE since 2017.
Xuemin (Sherman) Shen received the B.Sc. degree from Dalian Maritime University, Dalian, China, in 1982, and the M.Sc. and Ph.D. degrees from Rutgers University, New Brunswick, NJ, USA, in 1987 and 1990, respectively, all in Electrical Engineering. He is currently a University Professorwith the Department of Electrical and Computer Engineering, University of Waterloo, Canada. His research focuses on network resource management, wireless network security, Internet of Things, 5G and beyond, and vehicular ad hoc and sensor networks. Dr. Shen is a registered Professional Engineer of Ontario, Canada, an Engineering Institute of Canada Fellow, a Canadian Academy of Engineering Fellow, a Royal Society of Canada Fellow, a Chinese Academy of Engineering Foreign Member, and a Distinguished Lecturer of the IEEE Vehicular Technology Society and Communications Society. Dr. Shen received the R.A. Fessenden Award in 2019 from IEEE, Canada, Award of Merit from the Federation of Chinese Canadian Professionals (Ontario) in 2019, James Evans Avant Garde Award in 2018 from the IEEE Vehicular Technology Society, Joseph LoCicero Award in 2015 and Education Award in 2017 from the IEEE Communications Society, and Technical Recognition Award from Wireless Communications Technical Committee(2019) and AHSN Technical Committee (2013). He has also received the Excellent Graduate Supervision Award in 2006 from the University of Waterloo and the Premier’s Research Excellence Award (PREA) in 2003 from the Province of Ontario, Canada. He served as the Technical Program Committee Chair/Co-Chair for IEEE Globecom’16, IEEE Infocom’14, IEEE VTC’10 Fall, IEEE Globecom’07, and the Chair for the IEEE Communications Society Technical Committee on Wireless Communications. Dr. Shen is the elected IEEE Communications Society Vice President for Technical & Educational Activities, Vice President for Publications, Member-at-Large on the Board of Governors, Chair of the Distinguished Lecturer Selection Committee, Member of IEEE ComSoc Fellow Selection Committee. He was/is the Editor-in-Chief of the IEEE IoT JOURNAL, IEEE Network, IET Communications, and Peer-to-Peer Networking and Applications

De la contraportada

This book provides a comprehensive review and in-depth discussion of the state-of-the-art research literature and propose energy-efficient computation offloading and resources management for mobile edge computing (MEC), covering task offloading, channel allocation, frequency scaling and resource scheduling. Since the task arrival process and channel conditions are stochastic and dynamic, the authors first propose an energy efficient dynamic computing offloading scheme to minimize energy consumption and guarantee end devices’ delay performance. To further improve energy efficiency combined with tail energy, the authors present a computation offloading and frequency scaling scheme to jointly deal with the stochastic task allocation and CPU-cycle frequency scaling for minimal energy consumption while guaranteeing the system stability. They also investigate delay-aware and energy-efficient computation offloading in a dynamic MEC system with multiple edge servers, and introduce an end-to-end deep reinforcement learning (DRL) approach to select the best edge server for offloading and allocate the optimal computational resource such that the expected long-term utility is maximized. Finally, the authors study the multi-task computation offloading in multi-access MEC via non-orthogonal multiple access (NOMA) and accounting for the time-varying channel conditions. An online algorithm based on DRL is proposed to efficiently learn the near-optimal offloading solutions.

Researchers working in  mobile edge computing, task offloading and resource management, as well as advanced level students in electrical and computer engineering, telecommunications, computer science or other related disciplines will find this book useful as a reference. Professionals working within these related fields will also benefit from this book.

 

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar usado

Zustand: Hervorragend | Seiten:...
Ver este artículo

GRATIS gastos de envío desde Alemania a España

Destinos, gastos y plazos de envío

Comprar nuevo

Ver este artículo

EUR 5,18 gastos de envío desde Reino Unido a España

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9783031168246: Energy Efficient Computation Offloading in Mobile Edge Computing (Wireless Networks)

Edición Destacada

ISBN 10:  3031168240 ISBN 13:  9783031168246
Editorial: Springer, 2023
Tapa blanda

Resultados de la búsqueda para Energy Efficient Computation Offloading in Mobile Edge...

Imagen de archivo

Ying Chen, Sherman Shen, Yuan Wu, Ning Zhang
Publicado por Springer International Publishing, 2022
ISBN 10: 3031168216 ISBN 13: 9783031168215
Antiguo o usado Tapa dura

Librería: Buchpark, Trebbin, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: Hervorragend. Zustand: Hervorragend | Seiten: 172 | Sprache: Englisch | Produktart: Bücher. Nº de ref. del artículo: 40753188/1

Contactar al vendedor

Comprar usado

EUR 115,32
Convertir moneda
Gastos de envío: GRATIS
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Chen, Ying; Zhang, Ning; Wu, Yuan; Shen, Sherman
Publicado por Springer, 2022
ISBN 10: 3031168216 ISBN 13: 9783031168215
Nuevo Tapa dura

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In. Nº de ref. del artículo: ria9783031168215_new

Contactar al vendedor

Comprar nuevo

EUR 147,47
Convertir moneda
Gastos de envío: EUR 5,18
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Chen, Ying|Zhang, Ning|Wu, Yuan|Shen, Sherman
ISBN 10: 3031168216 ISBN 13: 9783031168215
Nuevo Tapa dura
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Gebunden. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book provides a comprehensive review and in-depth discussion of the state-of-the-art research literature and propose energy-efficient computation offloading and resources management for mobile edge computing (MEC), covering task offloading, channel all. Nº de ref. del artículo: 690281450

Contactar al vendedor

Comprar nuevo

EUR 136,16
Convertir moneda
Gastos de envío: EUR 19,49
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Chen, Ying; Zhang, Ning; Wu, Yuan; Shen, Sherman
Publicado por Springer, 2022
ISBN 10: 3031168216 ISBN 13: 9783031168215
Nuevo Tapa dura

Librería: GreatBookPricesUK, Woodford Green, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 45209457-n

Contactar al vendedor

Comprar nuevo

EUR 147,45
Convertir moneda
Gastos de envío: EUR 17,30
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Ying Chen
ISBN 10: 3031168216 ISBN 13: 9783031168215
Nuevo Tapa dura
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book provides a comprehensive review and in-depth discussion of the state-of-the-art research literature and propose energy-efficient computation offloading and resources management for mobile edge computing (MEC), covering task offloading, channel allocation, frequency scaling and resource scheduling. Since the task arrival process and channel conditions are stochastic and dynamic, the authors first propose an energy efficient dynamic computing offloading scheme to minimize energy consumption and guarantee end devices' delay performance. To further improve energy efficiency combined with tail energy, the authors present a computation offloading and frequency scaling scheme to jointly deal with the stochastic task allocation and CPU-cycle frequency scaling for minimal energy consumption while guaranteeing the system stability. They also investigate delay-aware and energy-efficient computation offloading in a dynamic MEC system with multiple edge servers, and introduce anend-to-end deep reinforcement learning (DRL) approach to select the best edge server for offloading and allocate the optimal computational resource such that the expected long-term utility is maximized. Finally, the authors study the multi-task computation offloading in multi-access MEC via non-orthogonal multiple access (NOMA) and accounting for the time-varying channel conditions. An online algorithm based on DRL is proposed to efficiently learn the near-optimal offloading solutions.Researchers working in mobile edge computing, task offloading and resource management, as well as advanced level students in electrical and computer engineering, telecommunications, computer science or other related disciplines will find this book useful as a reference. Professionals working within these related fields will also benefit from this book. 172 pp. Englisch. Nº de ref. del artículo: 9783031168215

Contactar al vendedor

Comprar nuevo

EUR 160,49
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Ying Chen
Publicado por Springer International Publishing, 2022
ISBN 10: 3031168216 ISBN 13: 9783031168215
Nuevo Tapa dura

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book provides a comprehensive review and in-depth discussion of the state-of-the-art research literature and propose energy-efficient computation offloading and resources management for mobile edge computing (MEC), covering task offloading, channel allocation, frequency scaling and resource scheduling. Since the task arrival process and channel conditions are stochastic and dynamic, the authors first propose an energy efficient dynamic computing offloading scheme to minimize energy consumption and guarantee end devices' delay performance. To further improve energy efficiency combined with tail energy, the authors present a computation offloading and frequency scaling scheme to jointly deal with the stochastic task allocation and CPU-cycle frequency scaling for minimal energy consumption while guaranteeing the system stability. They also investigate delay-aware and energy-efficient computation offloading in a dynamic MEC system with multiple edge servers, and introduce anend-to-end deep reinforcement learning (DRL) approach to select the best edge server for offloading and allocate the optimal computational resource such that the expected long-term utility is maximized. Finally, the authors study the multi-task computation offloading in multi-access MEC via non-orthogonal multiple access (NOMA) and accounting for the time-varying channel conditions. An online algorithm based on DRL is proposed to efficiently learn the near-optimal offloading solutions.Researchers working in mobile edge computing, task offloading and resource management, as well as advanced level students in electrical and computer engineering, telecommunications, computer science or other related disciplines will find this book useful as a reference. Professionals working within these related fields will also benefit from this book. Nº de ref. del artículo: 9783031168215

Contactar al vendedor

Comprar nuevo

EUR 160,49
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Chen, Ying; Zhang, Ning; Wu, Yuan; Shen, Sherman
Publicado por Springer, 2022
ISBN 10: 3031168216 ISBN 13: 9783031168215
Nuevo Tapa dura

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 45209457-n

Contactar al vendedor

Comprar nuevo

EUR 158,07
Convertir moneda
Gastos de envío: EUR 17,06
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Chen, Ying; Zhang, Ning; Wu, Yuan; Shen, Sherman
Publicado por Springer, 2022
ISBN 10: 3031168216 ISBN 13: 9783031168215
Antiguo o usado Tapa dura

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 45209457

Contactar al vendedor

Comprar usado

EUR 167,01
Convertir moneda
Gastos de envío: EUR 17,06
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Chen, Ying; Zhang, Ning; Wu, Yuan; Shen, Sherman
Publicado por Springer, 2022
ISBN 10: 3031168216 ISBN 13: 9783031168215
Antiguo o usado Tapa dura

Librería: GreatBookPricesUK, Woodford Green, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 45209457

Contactar al vendedor

Comprar usado

EUR 167,52
Convertir moneda
Gastos de envío: EUR 17,30
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Ying Chen
ISBN 10: 3031168216 ISBN 13: 9783031168215
Nuevo Tapa dura

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. Neuware -This book provides a comprehensive review and in-depth discussion of the state-of-the-art research literature and propose energy-efficient computation offloading and resources management for mobile edge computing (MEC), covering task offloading, channel allocation, frequency scaling and resource scheduling. Since the task arrival process and channel conditions are stochastic and dynamic, the authors first propose an energy efficient dynamic computing offloading scheme to minimize energy consumption and guarantee end devices¿ delay performance. To further improve energy efficiency combined with tail energy, the authors present a computation offloading and frequency scaling scheme to jointly deal with the stochastic task allocation and CPU-cycle frequency scaling for minimal energy consumption while guaranteeing the system stability. They also investigate delay-aware and energy-efficient computation offloading in a dynamic MEC system with multiple edge servers, and introduce anend-to-end deep reinforcement learning (DRL) approach to select the best edge server for offloading and allocate the optimal computational resource such that the expected long-term utility is maximized. Finally, the authors study the multi-task computation offloading in multi-access MEC via non-orthogonal multiple access (NOMA) and accounting for the time-varying channel conditions. An online algorithm based on DRL is proposed to efficiently learn the near-optimal offloading solutions.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 172 pp. Englisch. Nº de ref. del artículo: 9783031168215

Contactar al vendedor

Comprar nuevo

EUR 160,49
Convertir moneda
Gastos de envío: EUR 35,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Existen otras 2 copia(s) de este libro

Ver todos los resultados de su búsqueda