Artículos relacionados a Ensemble Methods in Data Mining: Improving Accuracy...

Ensemble Methods in Data Mining: Improving Accuracy Through Combining Predictions - Tapa blanda

 
9783031030277: Ensemble Methods in Data Mining: Improving Accuracy Through Combining Predictions

Sinopsis

Ensemble methods have been called the most influential development in Data Mining and Machine Learning in the past decade. They combine multiple models into one usually more accurate than the best of its components. Ensembles can provide a critical boost to industrial challenges -- from investment timing to drug discovery, and fraud detection to recommendation systems -- where predictive accuracy is more vital than model interpretability. Ensembles are useful with all modeling algorithms, but this book focuses on decision trees to explain them most clearly. After describing trees and their strengths and weaknesses, the authors provide an overview of regularization -- today understood to be a key reason for the superior performance of modern ensembling algorithms. The book continues with a clear description of two recent developments: Importance Sampling (IS) and Rule Ensembles (RE). IS reveals classic ensemble methods -- bagging, random forests, and boosting -- to be special cases of a single algorithm, thereby showing how to improve their accuracy and speed. REs are linear rule models derived from decision tree ensembles. They are the most interpretable version of ensembles, which is essential to applications such as credit scoring and fault diagnosis. Lastly, the authors explain the paradox of how ensembles achieve greater accuracy on new data despite their (apparently much greater) complexity. This book is aimed at novice and advanced analytic researchers and practitioners -- especially in Engineering, Statistics, and Computer Science. Those with little exposure to ensembles will learn why and how to employ this breakthrough method, and advanced practitioners will gain insight into building even more powerful models. Throughout, snippets of code in R are provided to illustrate the algorithms described and to encourage the reader to try the techniques. The authorsare industry experts in data mining and machine learning who are also adjunct professors and popular speakers. Although early pioneers in discovering and using ensembles, they here distill and clarify the recent groundbreaking work of leading academics (such as Jerome Friedman) to bring the benefits of ensembles to practitioners. Table of Contents: Ensembles Discovered / Predictive Learning and Decision Trees / Model Complexity, Model Selection and Regularization / Importance Sampling and the Classic Ensemble Methods / Rule Ensembles and Interpretation Statistics / Ensemble Complexity

"Sinopsis" puede pertenecer a otra edición de este libro.

Comprar nuevo

Ver este artículo

EUR 5,17 gastos de envío desde Reino Unido a España

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9781608452842: Ensemble Methods in Data Mining: Improving Accuracy Through Combining Predictions (Synthesis Lectures on Data Mining and Knowledge Discovery)

Edición Destacada

ISBN 10:  1608452840 ISBN 13:  9781608452842
Editorial: Morgan and Claypool Publishers, 2010
Tapa blanda

Resultados de la búsqueda para Ensemble Methods in Data Mining: Improving Accuracy...

Imagen de archivo

Seni, Giovanni; Elder, John
Publicado por Springer, 2010
ISBN 10: 3031030273 ISBN 13: 9783031030277
Nuevo Tapa blanda

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In. Nº de ref. del artículo: ria9783031030277_new

Contactar al vendedor

Comprar nuevo

EUR 52,38
Convertir moneda
Gastos de envío: EUR 5,17
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Giovanni Seni, Seni,John Elder, Elder
Publicado por Springer Nature B.V., 2010
ISBN 10: 3031030273 ISBN 13: 9783031030277
Nuevo PAP
Impresión bajo demanda

Librería: PBShop.store UK, Fairford, GLOS, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

PAP. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9783031030277

Contactar al vendedor

Comprar nuevo

EUR 54,88
Convertir moneda
Gastos de envío: EUR 4,01
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Giovanni Seni, Seni,John Elder, Elder
Publicado por Springer Nature B.V., 2010
ISBN 10: 3031030273 ISBN 13: 9783031030277
Nuevo PAP
Impresión bajo demanda

Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

PAP. Condición: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9783031030277

Contactar al vendedor

Comprar nuevo

EUR 58,39
Convertir moneda
Gastos de envío: EUR 0,74
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito