Gaussian quadrature is a powerful technique for numerical integration that falls under the broad category of spectral methods. The purpose of this work is to provide an introduction to the theory and practice of Gaussian quadrature. We study the approximation theory of trigonometric and orthogonal polynomials and related functions and examine the analytical framework of Gaussian quadrature. We discuss Gaussian quadrature for bandlimited functions, a topic inspired by some recent developments in the analysis of prolate spheroidal wave functions. Algorithms for the computation of the quadrature nodes and weights are described. Several applications of Gaussian quadrature are given, ranging from the evaluation of special functions to pseudospectral methods for solving differential equations. Software realization of select algorithms is provided. Table of Contents: Introduction / Approximating with Polynomials and Related Functions / Gaussian Quadrature / Applications / Links to Mathematical Software
"Sinopsis" puede pertenecer a otra edición de este libro.
Narayan Kovvali received the B.Tech. degree in electrical engineering from the Indian Institute of Technology, Kharagpur, India, in 2000, and the M.S. and Ph.D. degrees in electrical engineering from Duke University, Durham, North Carolina, in 2002 and 2005, respectively. In 2006, he joined the Department of Electrical Engineering at Arizona State University, Tempe, Arizona, as Assistant Research Scientist. He currently holds the position of Assistant Research Professor in the School of Electrical, Computer, and Energy Engineering at Arizona State University. His research interests include statistical signal processing, detection, estimation, stochastic filtering and tracking, Bayesian data analysis, multi-sensor data fusion, Monte Carlo methods, and scientific computing. Dr. Kovvali is a Senior Member of the IEEE.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
Paperback or Softback. Condición: New. Theory and Applications of Gaussian Quadrature Methods. Book. Nº de ref. del artículo: BBS-9783031003899
Cantidad disponible: 5 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar3113020034752
Cantidad disponible: Más de 20 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9783031003899
Cantidad disponible: Más de 20 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. 1st edition NO-PA16APR2015-KAP. Nº de ref. del artículo: 26394734951
Cantidad disponible: 4 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In English. Nº de ref. del artículo: ria9783031003899_new
Cantidad disponible: Más de 20 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand. Nº de ref. del artículo: 401642168
Cantidad disponible: 4 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
PF. Condición: New. Nº de ref. del artículo: 6666-IUK-9783031003899
Cantidad disponible: 10 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND. Nº de ref. del artículo: 18394734957
Cantidad disponible: 4 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Gaussian quadrature is a powerful technique for numerical integration that falls under the broad category of spectral methods. The purpose of this work is to provide an introduction to the theory and practice of Gaussian quadrature. We study the approximation theory of trigonometric and orthogonal polynomials and related functions and examine the analytical framework of Gaussian quadrature. We discuss Gaussian quadrature for bandlimited functions, a topic inspired by some recent developments in the analysis of prolate spheroidal wave functions. Algorithms for the computation of the quadrature nodes and weights are described. Several applications of Gaussian quadrature are given, ranging from the evaluation of special functions to pseudospectral methods for solving differential equations. Software realization of select algorithms is provided. Table of Contents: Introduction / Approximating with Polynomials and Related Functions / Gaussian Quadrature / Applications / Links to Mathematical Software 68 pp. Englisch. Nº de ref. del artículo: 9783031003899
Cantidad disponible: 2 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Gaussian quadrature is a powerful technique for numerical integration that falls under the broad category of spectral methods. The purpose of this work is to provide an introduction to the theory and practice of Gaussian quadrature. We study the approximati. Nº de ref. del artículo: 608128819
Cantidad disponible: Más de 20 disponibles