Artículos relacionados a Large Sample Techniques for Statistics (Springer Texts...

Large Sample Techniques for Statistics (Springer Texts in Statistics) - Tapa dura

 
9783030916947: Large Sample Techniques for Statistics (Springer Texts in Statistics)

Sinopsis

This book offers a comprehensive guide to large sample techniques in statistics. With a focus on developing analytical skills and understanding motivation, Large Sample Techniques for Statistics begins with fundamental techniques, and connects theory and applications in engaging ways.


The first five chapters review some of the basic techniques, such as the fundamental epsilon-delta arguments, Taylor expansion, different types of convergence, and inequalities. The next five chapters discuss limit theorems in specific situations of observational data. Each of the first ten chapters contains at least one section of case study. The last six chapters are devoted to special areas of applications. This new edition introduces a final chapter dedicated to random matrix theory, as well as expanded treatment of inequalities and mixed effects models. 

The book's case studies and applications-oriented chapters demonstrate how to use methods developed from large sample theory in real world situations. The book is supplemented by a large number of exercises, giving readers opportunity to practice what they have learned. Appendices provide context for matrix algebra and mathematical statistics. The Second Edition seeks to address new challenges in data science.

This text is intended for a wide audience, ranging from senior undergraduate students to researchers with doctorates. A first course in mathematical statistics and a course in calculus are prerequisites..

"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca del autor

Jiming Jiang is Professor of Statistics and a former Director of Statistical Laboratory at the University of California, Davis. He is a prominent researcher in the fields of mixed effects models, small area estimation, model selection, and statistical genetics. He is the author of Linear and Generalized Linear Mixed Models and Their Applications, 2nd Edition (Springer 2021), Robust Mixed Model Analysis (2019), Asymptotic Analysis of Mixed Effects Models: Theory, Applications, and Open Problems (2017), and The Fence Methods (with T. Ngyuen, 2016). Jiming Jiang has been editorial board member of The Annals of Statistics and Journal of the American Statistical Association, among others. He is a Fellow of the American Association for the Advancement of Science, the American Statistical Association, and the Institute of Mathematical Statistics; an elected member of the International Statistical Institute; and a Yangtze River Scholar (Chaired Professor, 2017-2020).

De la contraportada

This book offers a comprehensive guide to large sample techniques in statistics. With a focus on developing analytical skills and understanding motivation, Large Sample Techniques for Statistics begins with fundamental techniques, and connects theory and applications in engaging ways.


The first five chapters review some of the basic techniques, such as the fundamental epsilon-delta arguments, Taylor expansion, different types of convergence, and inequalities. The next five chapters discuss limit theorems in specific situations of observational data. Each of the first ten chapters contains at least one section of case study. The last six chapters are devoted to special areas of applications. This new edition introduces a final chapter dedicated to random matrix theory, as well as expanded treatment of inequalities and mixed effects models. 

The book's case studies and applications-oriented chapters demonstrate how to usemethods developed from large sample theory in real world situations. The book is supplemented by a large number of exercises, giving readers opportunity to practice what they have learned. Appendices provide context for matrix algebra and mathematical statistics. The Second Edition seeks to address new challenges in data science.

This text is intended for a wide audience, ranging from senior undergraduate students to researchers with doctorates. A first course in mathematical statistics and a course in calculus are prerequisites..

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar usado

Condición: Como Nuevo
Unread book in perfect condition...
Ver este artículo

EUR 17,19 gastos de envío desde Reino Unido a España

Destinos, gastos y plazos de envío

Comprar nuevo

Ver este artículo

EUR 5,15 gastos de envío desde Reino Unido a España

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9783030916978: Large Sample Techniques for Statistics (Springer Texts in Statistics)

Edición Destacada

ISBN 10:  3030916979 ISBN 13:  9783030916978
Editorial: Springer, 2023
Tapa blanda

Resultados de la búsqueda para Large Sample Techniques for Statistics (Springer Texts...

Imagen de archivo

Jiang, Jiming
Publicado por Springer, 2022
ISBN 10: 3030916944 ISBN 13: 9783030916947
Nuevo Tapa dura

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In. Nº de ref. del artículo: ria9783030916947_new

Contactar al vendedor

Comprar nuevo

EUR 53,85
Convertir moneda
Gastos de envío: EUR 5,15
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Jiang, Jiming
Publicado por Springer, 2022
ISBN 10: 3030916944 ISBN 13: 9783030916947
Nuevo Tapa dura

Librería: GreatBookPricesUK, Woodford Green, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 44132281-n

Contactar al vendedor

Comprar nuevo

EUR 53,83
Convertir moneda
Gastos de envío: EUR 17,19
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Jiming Jiang
ISBN 10: 3030916944 ISBN 13: 9783030916947
Nuevo Tapa dura

Librería: Rarewaves.com UK, London, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardback. Condición: New. Second Edition 2022. This book offers a comprehensive guide to large sample techniques in statistics. With a focus on developing analytical skills and understanding motivation, Large Sample Techniques for Statistics begins with fundamental techniques, and connects theory and applications in engaging ways.The first five chapters review some of the basic techniques, such as the fundamental epsilon-delta arguments, Taylor expansion, different types of convergence, and inequalities. The next five chapters discuss limit theorems in specific situations of observational data. Each of the first ten chapters contains at least one section of case study. The last six chapters are devoted to special areas of applications. This new edition introduces a final chapter dedicated to random matrix theory, as well as expanded treatment of inequalities and mixed effects models. The book's case studies and applications-oriented chapters demonstrate how to use methods developed from large sample theory in real world situations. The book is supplemented by a large number of exercises, giving readers opportunity to practice what they have learned. Appendices provide context for matrix algebra and mathematical statistics. The Second Edition seeks to address new challenges in data science.This text is intended for a wide audience, ranging from senior undergraduate students to researchers with doctorates. A first course in mathematical statistics and a course in calculus are prerequisites. Nº de ref. del artículo: LU-9783030916947

Contactar al vendedor

Comprar nuevo

EUR 72,28
Convertir moneda
Gastos de envío: EUR 2,29
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Jiang, Jiming
Publicado por Springer, 2022
ISBN 10: 3030916944 ISBN 13: 9783030916947
Antiguo o usado Tapa dura

Librería: GreatBookPricesUK, Woodford Green, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 44132281

Contactar al vendedor

Comprar usado

EUR 58,64
Convertir moneda
Gastos de envío: EUR 17,19
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Jiang, Jiming
Publicado por Springer, 2022
ISBN 10: 3030916944 ISBN 13: 9783030916947
Antiguo o usado Tapa dura

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 44132281

Contactar al vendedor

Comprar usado

EUR 59,01
Convertir moneda
Gastos de envío: EUR 17,25
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Jiming Jiang
ISBN 10: 3030916944 ISBN 13: 9783030916947
Nuevo Tapa dura

Librería: Rarewaves.com USA, London, LONDO, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardback. Condición: New. Second Edition 2022. This book offers a comprehensive guide to large sample techniques in statistics. With a focus on developing analytical skills and understanding motivation, Large Sample Techniques for Statistics begins with fundamental techniques, and connects theory and applications in engaging ways.The first five chapters review some of the basic techniques, such as the fundamental epsilon-delta arguments, Taylor expansion, different types of convergence, and inequalities. The next five chapters discuss limit theorems in specific situations of observational data. Each of the first ten chapters contains at least one section of case study. The last six chapters are devoted to special areas of applications. This new edition introduces a final chapter dedicated to random matrix theory, as well as expanded treatment of inequalities and mixed effects models. The book's case studies and applications-oriented chapters demonstrate how to use methods developed from large sample theory in real world situations. The book is supplemented by a large number of exercises, giving readers opportunity to practice what they have learned. Appendices provide context for matrix algebra and mathematical statistics. The Second Edition seeks to address new challenges in data science.This text is intended for a wide audience, ranging from senior undergraduate students to researchers with doctorates. A first course in mathematical statistics and a course in calculus are prerequisites. Nº de ref. del artículo: LU-9783030916947

Contactar al vendedor

Comprar nuevo

EUR 77,53
Convertir moneda
Gastos de envío: EUR 2,29
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Jiang, Jiming
Publicado por Springer, 2022
ISBN 10: 3030916944 ISBN 13: 9783030916947
Nuevo Tapa dura

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 44132281-n

Contactar al vendedor

Comprar nuevo

EUR 67,24
Convertir moneda
Gastos de envío: EUR 17,25
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Jiming Jiang
Publicado por Springer International Publishing, 2022
ISBN 10: 3030916944 ISBN 13: 9783030916947
Nuevo Tapa dura
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Gebunden. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Focuses on analytical skills as well as applying formulaeProvides motivations and intuition so that readers can apply conceptsSecond Edition implements challenges of contemporary data scienceJiming Jiang is Professor of Stati. Nº de ref. del artículo: 521844591

Contactar al vendedor

Comprar nuevo

EUR 81,44
Convertir moneda
Gastos de envío: EUR 19,49
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Jiming Jiang
ISBN 10: 3030916944 ISBN 13: 9783030916947
Nuevo Tapa dura
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book offers a comprehensive guide to large sample techniques in statistics. With a focus on developing analytical skills and understanding motivation, Large Sample Techniques for Statisticsbegins with fundamental techniques, and connects theory and applications in engaging ways.The first five chapters review some of the basic techniques, such as the fundamental epsilon-delta arguments, Taylor expansion, different types of convergence, and inequalities. The next five chapters discuss limit theorems in specific situations of observational data. Each of the first ten chapters contains at least one section of case study. The last six chapters are devoted to special areas of applications. This new edition introduces a final chapter dedicated to random matrix theory, as well as expanded treatment of inequalities and mixed effects models.The book's case studies and applications-oriented chapters demonstrate how to use methods developed from large sample theory in real world situations. The book is supplemented by a large number of exercises, giving readers opportunity to practice what they have learned. Appendices provide context for matrix algebra and mathematical statistics. The Second Edition seeks to address new challenges in data science.This text is intended for a wide audience, ranging from senior undergraduate students to researchers with doctorates. A first course in mathematical statistics and a course in calculus are prerequisites. 704 pp. Englisch. Nº de ref. del artículo: 9783030916947

Contactar al vendedor

Comprar nuevo

EUR 96,29
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Jiming Jiang
Publicado por Springer International Publishing, 2022
ISBN 10: 3030916944 ISBN 13: 9783030916947
Nuevo Tapa dura

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book offers a comprehensive guide to large sample techniques in statistics. With a focus on developing analytical skills and understanding motivation, Large Sample Techniques for Statisticsbegins with fundamental techniques, and connects theory and applications in engaging ways.The first five chapters review some of the basic techniques, such as the fundamental epsilon-delta arguments, Taylor expansion, different types of convergence, and inequalities. The next five chapters discuss limit theorems in specific situations of observational data. Each of the first ten chapters contains at least one section of case study. The last six chapters are devoted to special areas of applications. This new edition introduces a final chapter dedicated to random matrix theory, as well as expanded treatment of inequalities and mixed effects models.The book's case studies and applications-oriented chapters demonstrate how to use methods developed from large sample theory in real world situations. The book is supplemented by a large number of exercises, giving readers opportunity to practice what they have learned. Appendices provide context for matrix algebra and mathematical statistics. The Second Edition seeks to address new challenges in data science.This text is intended for a wide audience, ranging from senior undergraduate students to researchers with doctorates. A first course in mathematical statistics and a course in calculus are prerequisites. Nº de ref. del artículo: 9783030916947

Contactar al vendedor

Comprar nuevo

EUR 96,29
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Existen otras 3 copia(s) de este libro

Ver todos los resultados de su búsqueda