Artículos relacionados a Probabilistic Graphical Models: Principles and Applications...

Probabilistic Graphical Models: Principles and Applications (Advances in Computer Vision and Pattern Recognition) - Tapa blanda

 
9783030619459: Probabilistic Graphical Models: Principles and Applications (Advances in Computer Vision and Pattern Recognition)

Sinopsis

This fully updated new edition of a uniquely accessible textbook/reference provides a general introduction to probabilistic graphical models (PGMs) from an engineering perspective.  It features new material on partially observable Markov decision processes, causal graphical models, causal discovery and deep learning, as well as an even greater number of exercises; it also incorporates a software library for several graphical models in Python.

The book covers the fundamentals for each of the main classes of PGMs, including representation, inference and learning principles, and reviews real-world applications for each type of model. These applications are drawn from a broad range of disciplines, highlighting the many uses of Bayesian classifiers, hidden Markov models, Bayesian networks, dynamic and temporal Bayesian networks, Markov random fields, influence diagrams, and Markov decision processes.

Topics and features:

  • Presents a unified framework encompassing all of the main classes of PGMs
  • Explores the fundamental aspects of representation, inference and learning for each technique
  • Examines new material on partially observable Markov decision processes, and graphical models
  • Includes a new chapter introducing deep neural networks and their relation with probabilistic graphical models 
  • Covers multidimensional Bayesian classifiers, relational graphical models, and causal models
  • Provides substantial chapter-ending exercises, suggestions for further reading, and ideas for research or programming projects
  • Describes classifiers such as Gaussian Naive Bayes, Circular Chain Classifiers, and Hierarchical Classifiers with Bayesian Networks
  • Outlines the practical application of the different techniques
  • Suggests possible course outlines for instructors

This classroom-tested work is suitable as a textbook for an advanced undergraduate or a graduate course in probabilistic graphical models for students of computer science, engineering, and physics. Professionals wishing to apply probabilistic graphical models in their own field, or interested in the basis of these techniques, will also find the book to be an invaluable reference.

Dr. Luis Enrique Sucar is a Senior Research Scientist at the National Institute for Astrophysics, Optics and Electronics (INAOE), Puebla, Mexico. He received the National Science Prize en 2016.

"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca del autor

Dr. Luis Enrique Sucar is a Senior Research Scientist in the Department of Computing at the National Institute of Astrophysics, Optics and Electronics (INAOE), Mexico.

De la contraportada

<p>This fully updated new edition of a uniquely accessible textbook/reference provides a general introduction to probabilistic graphical models (PGMs) from an engineering perspective.&nbsp; It features new material on partially observable Markov decision processes, graphical models, and deep learning, as well as an even greater number of exercises.<br></p>The book covers the fundamentals for each of the main classes of PGMs, including representation, inference and learning principles, and reviews real-world applications for each type of model. These applications are drawn from a broad range of disciplines, highlighting the many uses of Bayesian classifiers, hidden Markov models, Bayesian networks, dynamic and temporal Bayesian networks, Markov random fields, influence diagrams, and Markov decision processes.<p></p><p><b>Topics and features:</b></p><ul><li>Presents a unified framework encompassing all of the main classes of PGMs</li><li>Explores the fundamental aspects of representation, inference and learning for each technique</li><li>Examines new material on partially observable Markov decision processes, and graphical models</li><li>Includes&nbsp;a new chapter introducing deep neural networks and their relation with probabilistic graphical models&nbsp;</li><li>Covers multidimensional Bayesian classifiers, relational graphical models, and causal models<br></li><li>Provides substantial chapter-ending exercises, suggestions for further reading, and ideas for research or programming projects</li><li></li><li>Describes classifiers such as Gaussian Naive Bayes,&nbsp;Circular Chain Classifiers, and Hierarchical Classifiers with Bayesian Networks</li><li>Outlines the practical application of the different techniques</li><li>Suggests possible course outlines for instructors</li></ul><p>This classroom-tested work is suitable as a textbook for an advanced undergraduate or a graduate course in probabilistic graphical models for students of computer science, engineering, and physics. Professionals wishing to apply probabilistic graphical models in their own field, or interested in the basis of these techniques, will also find the book to be an invaluable reference.</p><p><b>Dr. Luis Enrique Sucar</b> is a Senior Research Scientist at the National Institute for Astrophysics, Optics and Electronics (INAOE), Puebla, Mexico.</p><p></p>

"Sobre este título" puede pertenecer a otra edición de este libro.

  • EditorialSpringer
  • Año de publicación2021
  • ISBN 10 3030619451
  • ISBN 13 9783030619459
  • EncuadernaciónTapa blanda
  • IdiomaInglés
  • Número de edición2
  • Número de páginas384
  • Contacto del fabricanteno disponible

Comprar usado

Condición: Como Nuevo
Unread book in perfect condition...
Ver este artículo

EUR 17,34 gastos de envío desde Estados Unidos de America a España

Destinos, gastos y plazos de envío

Comprar nuevo

Ver este artículo

EUR 10,33 gastos de envío desde Reino Unido a España

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9783030619428: Probabilistic Graphical Models: Principles and Applications (Advances in Computer Vision and Pattern Recognition)

Edición Destacada

ISBN 10:  3030619427 ISBN 13:  9783030619428
Editorial: Springer, 2020
Tapa dura

Resultados de la búsqueda para Probabilistic Graphical Models: Principles and Applications...

Imagen de archivo

Sucar, Luis Enrique
Publicado por Springer, 2021
ISBN 10: 3030619451 ISBN 13: 9783030619459
Nuevo Tapa blanda

Librería: Majestic Books, Hounslow, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 401728924

Contactar al vendedor

Comprar nuevo

EUR 45,79
Convertir moneda
Gastos de envío: EUR 10,33
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Sucar, Luis Enrique
Publicado por Springer, 2021
ISBN 10: 3030619451 ISBN 13: 9783030619459
Nuevo Tapa blanda

Librería: Books Puddle, New York, NY, Estados Unidos de America

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. 2nd ed. 2021 edition NO-PA16APR2015-KAP. Nº de ref. del artículo: 26394680899

Contactar al vendedor

Comprar nuevo

EUR 47,64
Convertir moneda
Gastos de envío: EUR 9,98
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Sucar, Luis Enrique
Publicado por Springer, 2021
ISBN 10: 3030619451 ISBN 13: 9783030619459
Nuevo Tapa blanda

Librería: Biblios, Frankfurt am main, HESSE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 18394680905

Contactar al vendedor

Comprar nuevo

EUR 48,64
Convertir moneda
Gastos de envío: EUR 14,50
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Luis Enrique Sucar
ISBN 10: 3030619451 ISBN 13: 9783030619459
Nuevo Taschenbuch
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This fully updated new edition of a uniquely accessible textbook/reference provides a general introduction to probabilistic graphical models (PGMs) from an engineering perspective. It features new material on partially observable Markov decision processes, causal graphical models, causal discovery and deep learning, as well as an even greater number of exercises; it also incorporates a software library for several graphical models in Python.The book covers the fundamentals for each of the main classes of PGMs, including representation, inference and learning principles, and reviews real-world applications for each type of model. These applications are drawn from a broad range of disciplines, highlighting the many uses of Bayesian classifiers, hidden Markov models, Bayesian networks, dynamic and temporal Bayesian networks, Markov random fields, influence diagrams, and Markov decision processes.Topics and features:Presents a unified framework encompassing all of the main classes of PGMsExplores the fundamental aspects of representation, inference and learning for each techniqueExamines new material on partially observable Markov decision processes, and graphical modelsIncludesa new chapter introducing deep neural networks and their relation with probabilistic graphical modelsCovers multidimensional Bayesian classifiers, relational graphical models, and causal modelsProvides substantial chapter-ending exercises, suggestions for further reading, and ideas for research or programming projectsDescribes classifiers such as Gaussian Naive Bayes,Circular Chain Classifiers, and Hierarchical Classifiers with Bayesian NetworksOutlines the practical application of the different techniquesSuggests possible course outlines for instructorsThis classroom-tested work is suitable as a textbook for an advanced undergraduate or a graduate course in probabilistic graphical models for students of computer science, engineering, and physics. Professionals wishing to apply probabilistic graphical models in their own field, or interested in the basis of these techniques, will also find the book to be an invaluable reference.Dr. Luis Enrique Sucar is a Senior Research Scientist at the NationalInstitute for Astrophysics, Optics and Electronics (INAOE), Puebla, Mexico.He received the National Science Prize en 2016. 384 pp. Englisch. Nº de ref. del artículo: 9783030619459

Contactar al vendedor

Comprar nuevo

EUR 53,49
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Luis Enrique Sucar
Publicado por Springer International Publishing, 2021
ISBN 10: 3030619451 ISBN 13: 9783030619459
Nuevo Taschenbuch

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This fully updated new edition of a uniquely accessible textbook/reference provides a general introduction to probabilistic graphical models (PGMs) from an engineering perspective. It features new material on partially observable Markov decision processes, causal graphical models, causal discovery and deep learning, as well as an even greater number of exercises; it also incorporates a software library for several graphical models in Python.The book covers the fundamentals for each of the main classes of PGMs, including representation, inference and learning principles, and reviews real-world applications for each type of model. These applications are drawn from a broad range of disciplines, highlighting the many uses of Bayesian classifiers, hidden Markov models, Bayesian networks, dynamic and temporal Bayesian networks, Markov random fields, influence diagrams, and Markov decision processes.Topics and features:Presents a unified framework encompassing all of the main classes of PGMsExplores the fundamental aspects of representation, inference and learning for each techniqueExamines new material on partially observable Markov decision processes, and graphical modelsIncludesa new chapter introducing deep neural networks and their relation with probabilistic graphical modelsCovers multidimensional Bayesian classifiers, relational graphical models, and causal modelsProvides substantial chapter-ending exercises, suggestions for further reading, and ideas for research or programming projectsDescribes classifiers such as Gaussian Naive Bayes,Circular Chain Classifiers, and Hierarchical Classifiers with Bayesian NetworksOutlines the practical application of the different techniquesSuggests possible course outlines for instructorsThis classroom-tested work is suitable as a textbook for an advanced undergraduate or a graduate course in probabilistic graphical models for students of computer science, engineering, and physics. Professionals wishing to apply probabilistic graphical models in their own field, or interested in the basis of these techniques, will also find the book to be an invaluable reference.Dr. Luis Enrique Sucar is a Senior Research Scientist at the NationalInstitute for Astrophysics, Optics and Electronics (INAOE), Puebla, Mexico.He received the National Science Prize en 2016. Nº de ref. del artículo: 9783030619459

Contactar al vendedor

Comprar nuevo

EUR 53,49
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Sucar, Luis Enrique
Publicado por Springer, 2021
ISBN 10: 3030619451 ISBN 13: 9783030619459
Nuevo Tapa blanda

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In. Nº de ref. del artículo: ria9783030619459_new

Contactar al vendedor

Comprar nuevo

EUR 61,11
Convertir moneda
Gastos de envío: EUR 4,65
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Sucar, Luis Enrique
ISBN 10: 3030619451 ISBN 13: 9783030619459
Nuevo Tapa blanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 541924678

Contactar al vendedor

Comprar nuevo

EUR 47,23
Convertir moneda
Gastos de envío: EUR 19,49
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Sucar, Luis Enrique
Publicado por Springer, 2021
ISBN 10: 3030619451 ISBN 13: 9783030619459
Nuevo Tapa blanda

Librería: California Books, Miami, FL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: I-9783030619459

Contactar al vendedor

Comprar nuevo

EUR 60,77
Convertir moneda
Gastos de envío: EUR 6,94
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Sucar, Luis Enrique
Publicado por Springer 2021-12, 2021
ISBN 10: 3030619451 ISBN 13: 9783030619459
Nuevo PF

Librería: Chiron Media, Wallingford, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

PF. Condición: New. Nº de ref. del artículo: 6666-IUK-9783030619459

Contactar al vendedor

Comprar nuevo

EUR 55,45
Convertir moneda
Gastos de envío: EUR 17,50
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 10 disponibles

Añadir al carrito

Imagen del vendedor

Sucar, Luis Enrique
Publicado por Springer, 2021
ISBN 10: 3030619451 ISBN 13: 9783030619459
Nuevo Tapa blanda

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 44163053-n

Contactar al vendedor

Comprar nuevo

EUR 55,75
Convertir moneda
Gastos de envío: EUR 17,34
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Existen otras 8 copia(s) de este libro

Ver todos los resultados de su búsqueda