This book provides an introduction to quantitative marketing with Python. The book presents a hands-on approach to using Python for real marketing questions, organized by key topic areas. Following the Python scientific computing movement toward reproducible research, the book presents all analyses in Colab notebooks, which integrate code, figures, tables, and annotation in a single file. The code notebooks for each chapter may be copied, adapted, and reused in one's own analyses. The book also introduces the usage of machine learning predictive models using the Python sklearn package in the context of marketing research.
This book is designed for three groups of readers: experienced marketing researchers who wish to learn to program in Python, coming from tools and languages such as R, SAS, or SPSS; analysts or students who already program in Python and wish to learn about marketing applications; and undergraduate or graduate marketing students with little or no programming background. It presumes only an introductory level of familiarity with formal statistics and contains a minimum of mathematics.
"Sinopsis" puede pertenecer a otra edición de este libro.
Jason Schwarz PhD is a Quantitative Researcher at Google and a former systems neurobiologist. His areas of research include perception, attention, motivation, behavioral pattern formation, and data visualization which he studies at scale at Google. Prior to joining Google, he was a data scientist at a startup where he ran analytics and developed and deployed production machine learning models on a Python stack.
Chris Chapman PhD is a Quantitative Researcher at Google, and an author of Chapman & Feit, R for Marketing Research and Analytics (Springer, 2015). In the broader industry, he has served as President of the American Marketing Association’s Practitioner Council, chaired the AMA Advanced Research Techniques Forum in 2012 and 2017, and is a member of several conference and industry committees. Chris regularly presents research innovations and teaches workshops on R, conjoint analysis, strategic modeling, and other analytics topics.
EleaMcDonnell Feit is an Assistant Professor of Marketing at Drexel University and a Senior Fellow of Marketing at The Wharton School. She enjoys making quantitative methods accessible to a broad audience and teaches workshops and courses on advertising measurement, marketing experiments, marketing analytics in R, discrete choice modeling and hierarchical Bayes methods. She is an author of Chapman & Feit, R for Marketing Research and Analytics (Springer, 2015).
This book provides an introduction to quantitative marketing with Python. The book presents a hands-on approach to using Python for real marketing questions, organized by key topic areas. Following the Python scientific computing movement toward reproducible research, the book presents all analyses in Colab notebooks, which integrate code, figures, tables, and annotation in a single file. The code notebooks for each chapter may be copied, adapted, and reused in one's own analyses. The book also introduces the usage of machine learning predictive models using the Python sklearn package in the context of marketing research.
This book is designed for three groups of readers: experienced marketing researchers who wish to learn to program in Python, coming from tools and languages such as R, SAS, or SPSS; analysts or students who already program in Python and wish to learn about marketing applications; and undergraduate or graduate marketing students with little or no programming background. It presumes only an introductory level of familiarity with formal statistics and contains a minimum of mathematics.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 64,15 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 19,49 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Introduces Python specifically for advanced quantitative marketing and analytics Presents the concept of shareable reproducible research enabled by notebooksApplies Python to the building of statistical models using open source librari. Nº de ref. del artículo: 448683426
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book provides an introduction to quantitative marketing with Python. The book presents a hands-on approach to using Python for real marketing questions, organized by key topic areas. Following the Python scientific computing movement toward reproducible research, the book presents all analyses in Colab not Elektronisches Buch, which integrate code, figures, tables, and annotation in a single file. The code not Elektronisches Buch for each chapter may be copied, adapted, and reused in one's own analyses. The book also introduces the usage of machine learning predictive models using the Python sklearn package in the context of marketing research.This book is designed for three groups of readers: experienced marketing researchers who wish to learn to program in Python, coming from tools and languages such as R, SAS, or SPSS; analysts or students who already program in Python and wish to learn about marketing applications; and undergraduate or graduate marketing students with little or no programming background. It presumes only an introductory level of familiarity with formal statistics and contains a minimum of mathematics. 284 pp. Englisch. Nº de ref. del artículo: 9783030497194
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book provides an introduction to quantitative marketing with Python. The book presents a hands-on approach to using Python for real marketing questions, organized by key topic areas. Following the Python scientific computing movement toward reproducible research, the book presents all analyses in Colab not Elektronisches Buch, which integrate code, figures, tables, and annotation in a single file. The code not Elektronisches Buch for each chapter may be copied, adapted, and reused in one's own analyses. The book also introduces the usage of machine learning predictive models using the Python sklearn package in the context of marketing research.This book is designed for three groups of readers: experienced marketing researchers who wish to learn to program in Python, coming from tools and languages such as R, SAS, or SPSS; analysts or students who already program in Python and wish to learn about marketing applications; and undergraduate or graduate marketing students with little or no programming background. It presumes only an introductory level of familiarity with formal statistics and contains a minimum of mathematics. Nº de ref. del artículo: 9783030497194
Cantidad disponible: 1 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 26380323855
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand This item is printed on demand. Nº de ref. del artículo: 383580112
Cantidad disponible: 4 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Buch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -This book provides an introduction to quantitative marketing with Python. The book presents a hands-on approach to using Python for real marketing questions, organized by key topic areas. Following the Python scientific computing movement toward reproducible research, the book presents all analyses in Colab not Elektronisches Buch, which integrate code, figures, tables, and annotation in a single file. The code not Elektronisches Buch for each chapter may be copied, adapted, and reused in one's own analyses. The book also introduces the usage of machine learning predictive models using the Python sklearn package in the context of marketing research.This book is designed for three groups of readers: experienced marketing researchers who wish to learn to program in Python, coming from tools and languages such as R, SAS, or SPSS; analysts or students who already program in Python and wish to learn about marketing applications; and undergraduate or graduate marketing students with little or no programming background. It presumes only an introductory level of familiarity with formal statistics and contains a minimum of mathematics.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 284 pp. Englisch. Nº de ref. del artículo: 9783030497194
Cantidad disponible: 1 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND. Nº de ref. del artículo: 18380323845
Cantidad disponible: 4 disponibles
Librería: BooksRun, Philadelphia, PA, Estados Unidos de America
Hardcover. Condición: Very Good. 1st ed. 2020. Ship within 24hrs. Satisfaction 100% guaranteed. APO/FPO addresses supported. Nº de ref. del artículo: 3030497194-8-1
Cantidad disponible: 1 disponibles
Librería: BooksRun, Philadelphia, PA, Estados Unidos de America
Hardcover. Condición: Good. 1st ed. 2020. Ship within 24hrs. Satisfaction 100% guaranteed. APO/FPO addresses supported. Nº de ref. del artículo: 3030497194-11-1
Cantidad disponible: 1 disponibles