Artículos relacionados a A Practical Guide to Hybrid Natural Language Processing:...

A Practical Guide to Hybrid Natural Language Processing: Combining Neural Models and Knowledge Graphs for NLP - Tapa blanda

 
9783030448325: A Practical Guide to Hybrid Natural Language Processing: Combining Neural Models and Knowledge Graphs for NLP

Sinopsis

This book provides readers with a practical guide to the principles of hybrid approaches to natural language processing (NLP) involving a combination of neural methods and knowledge graphs. To this end, it first introduces the main building blocks and then describes how they can be integrated to support the effective implementation of real-world NLP applications. To illustrate the ideas described, the book also includes a comprehensive set of experiments and exercises involving different algorithms over a selection of domains and corpora in various NLP tasks.

Throughout, the authors show how to leverage complementary representations stemming from the analysis of unstructured text corpora as well as the entities and relations described explicitly in a knowledge graph, how to integrate such representations, and how to use the resulting features to effectively solve NLP tasks in a range of domains. In addition, the book offers access to executable code with examples, exercises and real-world applications in key domains, like disinformation analysis and machine reading comprehension of scientific literature. All the examples and exercises proposed in the book are available as executable Jupyter notebooks in a GitHub repository. They are all ready to be run on Google Colaboratory or, if preferred, in a local environment.

A valuable resource for anyone interested in the interplay between neural and knowledge-based approaches to NLP, this book is a useful guide for readers with a background in structured knowledge representations as well as those whose main approach to AI is fundamentally based on logic. Further, it will appeal to those whose main background is in the areas of machine and deep learning who are looking for ways to leverage structured knowledge bases to optimize results along the NLP downstream.


"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca del autor

Jose Manuel Gomez-Perez leads the Cogito Research Lab at Expert System in Madrid, Spain, where he focuses on the combination of neural and knowledge-based approaches to enable reading comprehension in machines. His work lies at the intersection of several areas of artificial intelligence, including natural language processing, knowledge graphs and deep learning. He also consults for organizations like the European Space Agency and is the co-founder of ROHub.org, a platform for the intelligent management of scientific information. A former Marie Curie fellow, José Manuel holds a Ph.D. in Computer Science and Artificial Intelligence from Universidad Politécnica de Madrid. He regularly publishes in top scientific conferences and journals and his views have appeared in magazines like Nature and Scientific American, as well as newspapers like El País.

Ronald Denaux is a senior researcher scientist at Expert System. Ronald obtained his MSc in Computer Science from the Technical University Eindhoven, The Netherlands. After a couple of years working in industry as a software developer for a large IT company in The Netherlands, Ronald decided to go back to academia. He obtained a Ph.D., again in Computer Science, from the University of Leeds, UK. Ronald’s research interests have revolved around making semantic web technologies more usable for end users, which has required research into the areas of ontology authoring and reasoning, natural language interfaces, dialogue systems, intelligent user interfaces and user modelling.

Andres Garcia-Silva is a senior research scientist at Expert System, where he works on a variety of fields related to knowledge management and artificial intelligence including semantic technologies, natural language processing, information extraction and retrieval, and machine learning. Andrés holds a Ph.D. and a Master degree in Artificial Intelligence from Universidad Politécnica de Madrid. He has worked as a visiting researcher at the University of Southampton, the Free University of Berlin, and the University of Southern California. Andrés regularly publishes and reviews papers for conferences and workshops in the semantic web research community.

De la contraportada

This book provides readers with a practical guide to the principles of hybrid approaches to natural language processing (NLP) involving a combination of neural methods and knowledge graphs. To this end, it first introduces the main building blocks and then describes how they can be integrated to support the effective implementation of real-world NLP applications. To illustrate the ideas described, the book also includes a comprehensive set of experiments and exercises involving different algorithms over a selection of domains and corpora in various NLP tasks.

Throughout, the authors show how to leverage complementary representations stemming from the analysis of unstructured text corpora as well as the entities and relations described explicitly in a knowledge graph, how to integrate such representations, and how to use the resulting features to effectively solve NLP tasks in a range of domains. In addition, the book offers access to executable code with examples, exercisesand real-world applications in key domains, like disinformation analysis and machine reading comprehension of scientific literature. All the examples and exercises proposed in the book are available as executable Jupyter notebooks in a GitHub repository. They are all ready to be run on Google Colaboratory or, if preferred, in a local environment.

A valuable resource for anyone interested in the interplay between neural and knowledge-based approaches to NLP, this book is a useful guide for readers with a background in structured knowledge representations as well as those whose main approach to AI is fundamentally based on logic. Further, it will appeal to those whose main background is in the areas of machine and deep learning who are looking for ways to leverage structured knowledge bases to optimize results along the NLP downstream.

"Sobre este título" puede pertenecer a otra edición de este libro.

  • EditorialSpringer
  • Año de publicación2021
  • ISBN 10 3030448320
  • ISBN 13 9783030448325
  • EncuadernaciónTapa blanda
  • IdiomaInglés
  • Número de edición1
  • Número de páginas296
  • Contacto del fabricanteno disponible

Comprar nuevo

Ver este artículo

EUR 19,49 gastos de envío desde Alemania a España

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9783030448295: A Practical Guide to Hybrid Natural Language Processing: Combining Neural Models and Knowledge Graphs for NLP

Edición Destacada

ISBN 10:  3030448290 ISBN 13:  9783030448295
Editorial: Springer, 2020
Tapa dura

Resultados de la búsqueda para A Practical Guide to Hybrid Natural Language Processing:...

Imagen del vendedor

Jose Manuel Gomez-Perez|Ronald Denaux|Andres Garcia-Silva
Publicado por Springer International Publishing, 2021
ISBN 10: 3030448320 ISBN 13: 9783030448325
Nuevo Kartoniert / Broschiert
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Kartoniert / Broschiert. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Provides readers with a practical guide to hybrid approaches to natural language processing involving a combination of neural methods and knowledge graphsIncludes a comprehensive set of experiments and exercises to illustrate the ideas described. Nº de ref. del artículo: 474795292

Contactar al vendedor

Comprar nuevo

EUR 144,94
Convertir moneda
Gastos de envío: EUR 19,49
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Gomez-Perez, Jose Manuel; Denaux, Ronald; Garcia-Silva, Andres
Publicado por Springer, 2021
ISBN 10: 3030448320 ISBN 13: 9783030448325
Nuevo Tapa blanda

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In. Nº de ref. del artículo: ria9783030448325_new

Contactar al vendedor

Comprar nuevo

EUR 169,04
Convertir moneda
Gastos de envío: EUR 4,69
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Jose Manuel Gomez-Perez
ISBN 10: 3030448320 ISBN 13: 9783030448325
Nuevo Taschenbuch
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book provides readers with a practical guide to the principles of hybrid approaches to natural language processing (NLP) involving a combination of neural methods and knowledge graphs. To this end, it first introduces the main building blocks and then describes how they can be integrated to support the effective implementation of real-world NLP applications. To illustrate the ideas described, the book also includes a comprehensive set of experiments and exercises involving different algorithms over a selection of domains and corpora in various NLP tasks. Throughout, the authors show how to leverage complementary representations stemming from the analysis of unstructured text corpora as well as the entities and relations described explicitly in a knowledge graph, how to integrate such representations, and how to use the resulting features to effectively solve NLP tasks in a range of domains. In addition, the book offers access to executable code with examples, exercises and real-world applications in key domains, like disinformation analysis and machine reading comprehension of scientific literature. All the examples and exercises proposed in the book are available as executable Jupyter not Elektronisches Buch in a GitHub repository. They are all ready to be run on Google Colaboratory or, if preferred, in a local environment.A valuable resource for anyone interested in the interplay between neural and knowledge-based approaches to NLP, this book is a useful guide for readers with a background in structured knowledge representations as well as those whose main approach to AI is fundamentally based on logic. Further, it will appeal to those whose main background is in the areas of machine and deep learning who are looking for ways to leverage structured knowledge bases to optimize results along the NLP downstream. 296 pp. Englisch. Nº de ref. del artículo: 9783030448325

Contactar al vendedor

Comprar nuevo

EUR 171,19
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Jose Manuel Gomez-Perez
ISBN 10: 3030448320 ISBN 13: 9783030448325
Nuevo Taschenbuch

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book provides readers with a practical guide to the principles of hybrid approaches to natural language processing (NLP) involving a combination of neural methods and knowledge graphs. To this end, it first introduces the main building blocks and then describes how they can be integrated to support the effective implementation of real-world NLP applications. To illustrate the ideas described, the book also includes a comprehensive set of experiments and exercises involving different algorithms over a selection of domains and corpora in various NLP tasks. Throughout, the authors show how to leverage complementary representations stemming from the analysis of unstructured text corpora as well as the entities and relations described explicitly in a knowledge graph, how to integrate such representations, and how to use the resulting features to effectively solve NLP tasks in a range of domains. In addition, the book offers access to executable code with examples, exercises and real-world applications in key domains, like disinformation analysis and machine reading comprehension of scientific literature. All the examples and exercises proposed in the book are available as executable Jupyter not Elektronisches Buch in a GitHub repository. They are all ready to be run on Google Colaboratory or, if preferred, in a local environment.A valuable resource for anyone interested in the interplay between neural and knowledge-based approaches to NLP, this book is a useful guide for readers with a background in structured knowledge representations as well as those whose main approach to AI is fundamentally based on logic. Further, it will appeal to those whose main background is in the areas of machine and deep learning who are looking for ways to leverage structured knowledge bases to optimize results along the NLP downstream. Nº de ref. del artículo: 9783030448325

Contactar al vendedor

Comprar nuevo

EUR 171,19
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Jose Manuel Gomez-Perez
ISBN 10: 3030448320 ISBN 13: 9783030448325
Nuevo Taschenbuch
Impresión bajo demanda

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -This book provides readers with a practical guide to the principles of hybrid approaches to natural language processing (NLP) involving a combination of neural methods and knowledge graphs. To this end, it first introduces the main building blocks and then describes how they can be integrated to support the effective implementation of real-world NLP applications. To illustrate the ideas described, the book also includes a comprehensive set of experiments and exercises involving different algorithms over a selection of domains and corpora in various NLP tasks.Throughout, the authors show how to leverage complementary representations stemming from the analysis of unstructured text corpora as well as the entities and relations described explicitly in a knowledge graph, how to integrate such representations, and how to use the resulting features to effectively solve NLP tasks in a range of domains. In addition, the book offers access to executable code with examples, exercises and real-world applications in key domains, like disinformation analysis and machine reading comprehension of scientific literature. All the examples and exercises proposed in the book are available as executable Jupyter not Elektronisches Buch in a GitHub repository. They are all ready to be run on Google Colaboratory or, if preferred, in a local environment.A valuable resource for anyone interested in the interplay between neural and knowledge-based approaches to NLP, this book is a useful guide for readers with a background in structured knowledge representations as well as those whose main approach to AI is fundamentally based on logic. Further, it will appeal to those whose main background is in the areas of machine and deep learning who are looking for ways to leverage structured knowledge bases to optimize results along the NLP downstream.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 296 pp. Englisch. Nº de ref. del artículo: 9783030448325

Contactar al vendedor

Comprar nuevo

EUR 171,19
Convertir moneda
Gastos de envío: EUR 35,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Gomez-Perez, Jose Manuel; Denaux, Ronald; Garcia-Silva, Andres
Publicado por Springer, 2021
ISBN 10: 3030448320 ISBN 13: 9783030448325
Nuevo Tapa blanda

Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: ABLIING23Mar3113020018124

Contactar al vendedor

Comprar nuevo

EUR 169,01
Convertir moneda
Gastos de envío: EUR 65,17
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Gomez-perez, Jose Manuel/ Denaux, Ronald/ Garcia-silva, Andres
Publicado por Springer-Nature New York Inc, 2021
ISBN 10: 3030448320 ISBN 13: 9783030448325
Nuevo Paperback

Librería: Revaluation Books, Exeter, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: Brand New. 293 pages. 9.25x6.10x0.70 inches. In Stock. Nº de ref. del artículo: x-3030448320

Contactar al vendedor

Comprar nuevo

EUR 249,01
Convertir moneda
Gastos de envío: EUR 11,79
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito