Data Analysis for Direct Numerical Simulations of Turbulent Combustion: From Equation-Based Analysis to Machine Learning - Tapa blanda

 
9783030447199: Data Analysis for Direct Numerical Simulations of Turbulent Combustion: From Equation-Based Analysis to Machine Learning

Esta edición ISBN ya no está disponible.

Sinopsis

Partial A-Posteriori LES of DNS Data of Turbulent Combustion.- Application of the Optimal Estimator Analysis to Turbulent Combustion Modeling.- Reduced Order Modeling of Rocket Combustion Flows.- Dynamic Mode Decompositions: A Tool to Extract Structure Hidden in Massive Dataset.- Analysis of Combustion-Modes Through Structural and Dynamic Technique.- Analysis of the Impact of Combustion On Turbulence: Triadic Analysis, Wavelets, Structure Functions, Spectra.- Analysis of Flame Topology and Burning Rates.- Dissipation Element Analysis of Turbulent Combustion.- Higher Order Tensors for DNS Data Analysis and Compression.- Covariant Lyapunov Vector Analysis of Turbulent Reacting Flows.- CEMA Analysis Applied to DNS Data.- Combined Computational Singular Perturbation-Tangential Stretching Rate Diagnostics of Large.- Scale Simulations of Reactive Turbulent Flows: Feature Tracking, Time Scale Characterization, and Cause/Effect Identification.- Genetic Algorithms Applied to LES Model Development.- Sub-grid Scale Signal Reconstruction: From Discrete and Iterative Deconvolution Operators to Convolutional Neural Networks.- Machine Learning for Combustion Rate Shaping.- Machine Learning of Combustion LES Models from DNS.- Developing Artificial Neural Networks Based Models for Complex Turbulent Flow by Utilizing DNS Database

"Sinopsis" puede pertenecer a otra edición de este libro.

Otras ediciones populares con el mismo título

9783030447175: Data Analysis for Direct Numerical Simulations of Turbulent Combustion: From Equation-Based Analysis to Machine Learning

Edición Destacada

ISBN 10:  3030447170 ISBN 13:  9783030447175
Editorial: Springer, 2020
Tapa dura