This book presents ground-breaking advances in the domain of causal structure learning. The problem of distinguishing cause from effect ("Does altitude cause a change in atmospheric pressure, or vice versa?") is here cast as a binary classification problem, to be tackled by machine learning algorithms. Based on the results of the ChaLearn Cause-Effect Pairs Challenge, this book reveals that the joint distribution of two variables can be scrutinized by machine learning algorithms to reveal the possible existence of a "causal mechanism", in the sense that the values of one variable may have been generated from the values of the other.
"Sinopsis" puede pertenecer a otra edición de este libro.
This book presents ground-breaking advances in the domain of causal structure learning. The problem of distinguishing cause from effect ( Does altitude cause a change in atmospheric pressure, or vice versa? ) is here cast as a binary classification problem, to be tackled by machine learning algorithms. Based on the results of the ChaLearn Cause-Effect Pairs Challenge, this book reveals that the joint distribution of two variables can be scrutinized by machine learning algorithms to reveal the possible existence of a causal mechanism , in the sense that the values of one variable may have been generated from the values of the other.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar3113020010123
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9783030218126_new
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book presents ground-breaking advances in the domain of causal structure learning.The problem of distinguishing cause from effect('Does altitude cause a change in atmospheric pressure, or vice versa ') is here cast as a binary classification problem, to be tackled by machine learning algorithms. Based on the results of theChaLearn Cause-Effect Pairs Challenge, this book reveals that the joint distribution of two variables can be scrutinized by machine learning algorithms to reveal the possible existence of a 'causal mechanism', in the sense that the values of one variable may have been generated from the values of the other.This book provides both tutorial material on the state-of-the-art on cause-effect pairs and exposes the reader to more advanced material, with a collection of selected papers. Supplemental material includes videos, slides, and code which can be found on the workshop website.Discovering causal relationships from observational data will become increasingly important in data science with the increasing amount of available data, as a means of detecting potential triggers in epidemiology, social sciences, economy, biology, medicine, and other sciences. 388 pp. Englisch. Nº de ref. del artículo: 9783030218126
Cantidad disponible: 2 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. XVI, 372 122 illus., 90 illus. in color. 1 Edition NO-PA16APR2015-KAP. Nº de ref. del artículo: 26384558670
Cantidad disponible: 4 disponibles
Librería: moluna, Greven, Alemania
Kartoniert / Broschiert. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Comprehensive reference for those interested in the cause-effect problem, and how to tackle them using machine learning algorithmsIncludes six tutorial chapters, beginning with the simplest cases and common methods, to alg. Nº de ref. del artículo: 448675598
Cantidad disponible: Más de 20 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. XVI, 372 122 illus., 90 illus. in color. Nº de ref. del artículo: 379345297
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND pp. XVI, 372 122 illus., 90 illus. in color. Nº de ref. del artículo: 18384558660
Cantidad disponible: 4 disponibles
Librería: preigu, Osnabrück, Alemania
Taschenbuch. Condición: Neu. Cause Effect Pairs in Machine Learning | Isabelle Guyon (u. a.) | Taschenbuch | xvi | Englisch | 2020 | Springer International Publishing | EAN 9783030218126 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Nº de ref. del artículo: 119060973
Cantidad disponible: 5 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. Neuware -This book presents ground-breaking advances in the domain of causal structure learning. The problem of distinguishing cause from effect (¿Does altitude cause a change in atmospheric pressure, or vice versa ¿) is here cast as a binary classification problem, to be tackled by machine learning algorithms. Based on the results of the ChaLearn Cause-Effect Pairs Challenge, this book reveals that the joint distribution of two variables can be scrutinized by machine learning algorithms to reveal the possible existence of a ¿causal mechanism¿, in the sense that the values of one variable may have been generated from the values of the other.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 388 pp. Englisch. Nº de ref. del artículo: 9783030218126
Cantidad disponible: 2 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 388 pages. 9.25x6.10x0.94 inches. In Stock. Nº de ref. del artículo: x-3030218120
Cantidad disponible: 2 disponibles