Approximation and Optimization: Algorithms, Complexity and Applications - Tapa blanda

 
9783030127688: Approximation and Optimization: Algorithms, Complexity and Applications

Esta edición ISBN ya no está disponible.

Sinopsis

Introduction.- Evaluation Complexity Bounds for Smooth Constrained Nonlinear Optimization using Scaled KKT Conditions and High-order Models.- Data-Dependent Approximation in Social Computing.- Multi-Objective Evolutionary Optimization Algorithms for Machine Learning: a Recent Survey.- No Free Lunch Theorem, a Review.- Piecewise Convex-Concave Approximation in the Minimax Norm.- A Decomposition Theorem for the Least Squares Piecewise Monotonic Data Approximation Problem.- Recent Progress in Optimization of Multiband Electrical Filters.- Impact of Error in Parameter Estimations on Large Scale Portfolio Optimization.- Optimal Design of Smart Composites.- Tax Evasion as an Optimal Solution to a Partially Observable Markov Decision Process.

"Sinopsis" puede pertenecer a otra edición de este libro.

Otras ediciones populares con el mismo título

9783030127664: Approximation and Optimization: Algorithms, Complexity and Applications: 145 (Springer Optimization and Its Applications)

Edición Destacada

ISBN 10:  3030127664 ISBN 13:  9783030127664
Editorial: Springer, 2019
Tapa dura