Master machine learning through clarity, not complexity―in a book engineered to teach with exceptional conciseness.
Translated into 11 languages and used in thousands of universities worldwide, this book takes a unique approach: it assumes that your time is valuable. Instead of drowning you in theory or skimming the surface, it delivers a complete education in modern machine learning, focusing on what matters in practice. From fundamental algorithms that form the backbone of many applications, to cutting-edge deep learning and neural networks, you'll understand how these tools work and how to use them.
What sets this book apart is its careful progression through key concepts. You'll start with essential mathematical concepts and gradually progress through the most practically important machine learning algorithms. You'll learn practical skills like feature engineering, regularization, handling imbalanced datasets, ensembles, and model evaluation that help turn theory into working systems.
The book covers not just supervised learning, but also clustering, topic modeling, metric learning, learning to rank, and recommendation systems, giving you a complete toolkit for solving modern machine learning challenges.
This isn't just another theoretical textbook. Every chapter reflects the author's real-world experience, focusing on techniques that work in practice. Whether you're building a recommendation system, analyzing customer data, or working with images and text, you'll find practical guidance here.
This isn't a high-level overview either. The book explores each concept with precisely the right level of technical detail-enough to create those crucial "a-ha!" moments of understanding, but not so much that you get overwhelmed by mathematical notation or theoretical abstractions. It hits that sweet spot where complex ideas click into place naturally, making it valuable for both newcomers looking to build a strong foundation and experienced practitioners seeking to expand their toolkit.
What's Inside
About the Reader
The book assumes a basic foundation in college-level mathematics. However, it's entirely self-contained, introducing all necessary mathematical concepts through intuitive explanations. This approach ensures that readers with basic mathematical knowledge can follow along without getting lost in complex equations.
Endorsed by Peter Norvig, Research Director at Google, co-author of AIMA, the most popular AI textbook in the world, Aurélien Géron, Senior AI Engineer, author of the bestseller Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, and other industry leaders.
Read endorsements on themlbook.com
"Sinopsis" puede pertenecer a otra edición de este libro.
Andriy Burkov is the author of "The Hundred-Page Machine Learning Book" and "Machine Learning Engineering," both of which became #1 Best Sellers on Amazon. He holds a Ph.D. in Artificial Intelligence and is a recognized expert in machine learning and natural language processing.As a machine learning expert and leader, Andriy has successfully led dozens of production-grade AI projects in different business domains at Fujitsu and Gartner. His previous books have been translated into more than a dozen languages and are used as textbooks in many universities worldwide. His work has impacted millions of machine learning practitioners and researchers worldwide.Currently, Andriy is the Head of Machine Learning at TalentNeuron, where he develops AI solutions for talent marketplace analytics. He uses language models and other machine learning tools to analyze billions of job postings across 30+ languages in near real time.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 10,21 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 6,82 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoLibrería: -OnTimeBooks-, Phoenix, AZ, Estados Unidos de America
Condición: very_good. Gently read. May have name of previous ownership, or ex-library edition. Binding tight; spine straight and smooth, with no creasing; covers clean and crisp. Minimal signs of handling or shelving. 100% GUARANTEE! Shipped with delivery confirmation, if youâre not satisfied with purchase please return item for full refund. Ships USPS Media Mail. Nº de ref. del artículo: OTV.1999579518.VG
Cantidad disponible: 2 disponibles
Librería: Better World Books, Mishawaka, IN, Estados Unidos de America
Condición: As New. Used book that is in almost brand-new condition. Nº de ref. del artículo: 40840381-6
Cantidad disponible: 3 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9781999579517
Cantidad disponible: Más de 20 disponibles
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
Hardback or Cased Book. Condición: New. The Hundred-Page Machine Learning Book 1.3. Book. Nº de ref. del artículo: BBS-9781999579517
Cantidad disponible: 5 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 36644947-n
Cantidad disponible: Más de 20 disponibles
Librería: Rarewaves USA, OSWEGO, IL, Estados Unidos de America
Hardback. Condición: New. Hard Cover ed. Nº de ref. del artículo: LU-9781999579517
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 36644947
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
HRD. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L1-9781999579517
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
HRD. Condición: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L1-9781999579517
Cantidad disponible: Más de 20 disponibles
Librería: Speedyhen, London, Reino Unido
Condición: NEW. Nº de ref. del artículo: NW9781999579517
Cantidad disponible: 2 disponibles