Artículos relacionados a Machine Learning with Clustering: A Visual Guide for...

Machine Learning with Clustering: A Visual Guide for Beginners with Examples in Python 3 - Tapa blanda

 
9781979086585: Machine Learning with Clustering: A Visual Guide for Beginners with Examples in Python 3

Sinopsis

There are four major tasks for clustering:

Making simplification for further data processing. In this case, the data is split into different groups which then are processed individually. In business, for instance, we can find different groups of customers sharing some similar features using cluster analysis. Then, we can use this information to develop different marketing strategies and apply them to all these separate groups of customers. Or, we can cluster a marketplace in a specific niche to find what kinds of products are selling better than other ones to make a decision what kind of products to produce. Usually, clustering is one of the first techniques that help explore a dataset we are going to work with to get some sense of the structure of the data.

Compression of the data. We can implement cluster analysis on a giant data set. Then from each cluster, we can pick just several items. In this case, we usually lose much less information than in the case where we pick data points without preceding clustering. Clustering algorithms are being used to compress not only large data sets but also relatively small objects like images.

Picking out unusual data points from the dataset. This procedure is done, for example, for the detection of fraudulent transactions with credit cards. In medicine, similar procedures can be used, for example, to identify new forms of illnesses.

Building the hierarchy of objects. This is implemented for classification of biological organisms. It is also applied, for example, in search engines to group different text documents inside the search engines’ datasets.

In an introductory chapter, you will find:

Different types of machine learning;

Features in datasets;

Dimensionality of datasets;

The ‘curse’ of dimensionality;

Dealing with underfitting and overfitting

In the following chapters, we will implement these concepts in practice, working with clustering algorithms.

This book provides detailed explanations of several widely-used clustering approaches with visual representations:

Hierarchical agglomerative clustering;

K-means;

DBSCAN;

Neural network-based clustering

You will learn different strengths and weaknesses of these algorithms as well as the practical strategies to overcome the weaknesses. In addition, we will briefly touch upon some other clustering methods.

The examples of the algorithms are presented in Python 3. We will work with several datasets, including the ones based on real-world data.

We will be primarily working with the Scikit-learn and SciPy libraries. But our neural network for clustering, we will build basically from scratch, just by using NumPy arrays.

"Sinopsis" puede pertenecer a otra edición de este libro.

Reseña del editor

There are four major tasks for clustering:

Making simplification for further data processing. In this case, the data is split into different groups which then are processed individually. In business, for instance, we can find different groups of customers sharing some similar features using cluster analysis. Then, we can use this information to develop different marketing strategies and apply them to all these separate groups of customers. Or, we can cluster a marketplace in a specific niche to find what kinds of products are selling better than other ones to make a decision what kind of products to produce. Usually, clustering is one of the first techniques that help explore a dataset we are going to work with to get some sense of the structure of the data.

Compression of the data. We can implement cluster analysis on a giant data set. Then from each cluster, we can pick just several items. In this case, we usually lose much less information than in the case where we pick data points without preceding clustering. Clustering algorithms are being used to compress not only large data sets but also relatively small objects like images.

Picking out unusual data points from the dataset. This procedure is done, for example, for the detection of fraudulent transactions with credit cards. In medicine, similar procedures can be used, for example, to identify new forms of illnesses.

Building the hierarchy of objects. This is implemented for classification of biological organisms. It is also applied, for example, in search engines to group different text documents inside the search engines’ datasets.

In an introductory chapter, you will find:

Different types of machine learning;

Features in datasets;

Dimensionality of datasets;

The ‘curse’ of dimensionality;

Dealing with underfitting and overfitting

In the following chapters, we will implement these concepts in practice, working with clustering algorithms.

This book provides detailed explanations of several widely-used clustering approaches with visual representations:

Hierarchical agglomerative clustering;

K-means;

DBSCAN;

Neural network-based clustering

You will learn different strengths and weaknesses of these algorithms as well as the practical strategies to overcome the weaknesses. In addition, we will briefly touch upon some other clustering methods.

The examples of the algorithms are presented in Python 3. We will work with several datasets, including the ones based on real-world data.

We will be primarily working with the Scikit-learn and SciPy libraries. But our neural network for clustering, we will build basically from scratch, just by using NumPy arrays.

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar nuevo

Ver este artículo

EUR 0,82 gastos de envío desde Estados Unidos de America a España

Destinos, gastos y plazos de envío

Resultados de la búsqueda para Machine Learning with Clustering: A Visual Guide for...

Imagen de archivo

Kovera, Artem
ISBN 10: 1979086583 ISBN 13: 9781979086585
Nuevo PAP
Impresión bajo demanda

Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

PAP. Condición: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9781979086585

Contactar al vendedor

Comprar nuevo

EUR 19,39
Convertir moneda
Gastos de envío: EUR 0,82
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Kovera, Artem
ISBN 10: 1979086583 ISBN 13: 9781979086585
Nuevo Tapa blanda

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In. Nº de ref. del artículo: ria9781979086585_new

Contactar al vendedor

Comprar nuevo

EUR 15,58
Convertir moneda
Gastos de envío: EUR 5,19
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Kovera, Artem
ISBN 10: 1979086583 ISBN 13: 9781979086585
Nuevo PAP
Impresión bajo demanda

Librería: PBShop.store UK, Fairford, GLOS, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

PAP. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9781979086585

Contactar al vendedor

Comprar nuevo

EUR 17,69
Convertir moneda
Gastos de envío: EUR 4,03
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Artem Kovera
ISBN 10: 1979086583 ISBN 13: 9781979086585
Nuevo Paperback
Impresión bajo demanda

Librería: THE SAINT BOOKSTORE, Southport, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 237. Nº de ref. del artículo: C9781979086585

Contactar al vendedor

Comprar nuevo

EUR 18,03
Convertir moneda
Gastos de envío: EUR 5,60
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Kovera, Artem
ISBN 10: 1979086583 ISBN 13: 9781979086585
Nuevo Tapa blanda

Librería: Zubal-Books, Since 1961, Cleveland, OH, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. 56 pp., paperback, new. - If you are reading this, this item is actually (physically) in our stock and ready for shipment once ordered. We are not bookjackers. Buyer is responsible for any additional duties, taxes, or fees required by recipient's country. Nº de ref. del artículo: ZB1316190

Contactar al vendedor

Comprar nuevo

EUR 8,73
Convertir moneda
Gastos de envío: EUR 20,34
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Artem Kovera
ISBN 10: 1979086583 ISBN 13: 9781979086585
Nuevo Taschenbuch

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Neuware. Nº de ref. del artículo: 9781979086585

Contactar al vendedor

Comprar nuevo

EUR 26,42
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Artem Kovera
ISBN 10: 1979086583 ISBN 13: 9781979086585
Nuevo Paperback

Librería: CitiRetail, Stevenage, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: new. Paperback. There are four major tasks for clustering: Making simplification for further data processing. In this case, the data is split into different groups which then are processed individually. In business, for instance, we can find different groups of customers sharing some similar features using cluster analysis. Then, we can use this information to develop different marketing strategies and apply them to all these separate groups of customers. Or, we can cluster a marketplace in a specific niche to find what kinds of products are selling better than other ones to make a decision what kind of products to produce. Usually, clustering is one of the first techniques that help explore a dataset we are going to work with to get some sense of the structure of the data.Compression of the data. We can implement cluster analysis on a giant data set. Then from each cluster, we can pick just several items. In this case, we usually lose much less information than in the case where we pick data points without preceding clustering. Clustering algorithms are being used to compress not only large data sets but also relatively small objects like images.Picking out unusual data points from the dataset. This procedure is done, for example, for the detection of fraudulent transactions with credit cards. In medicine, similar procedures can be used, for example, to identify new forms of illnesses.Building the hierarchy of objects. This is implemented for classification of biological organisms. It is also applied, for example, in search engines to group different text documents inside the search engines' datasets.In an introductory chapter, you will find: Different types of machine learning;Features in datasets;Dimensionality of datasets;The 'curse' of dimensionality;Dealing with underfitting and overfittingIn the following chapters, we will implement these concepts in practice, working with clustering algorithms.This book provides detailed explanations of several widely-used clustering approaches with visual representations: Hierarchical agglomerative clustering;K-means;DBSCAN;Neural network-based clusteringYou will learn different strengths and weaknesses of these algorithms as well as the practical strategies to overcome the weaknesses. In addition, we will briefly touch upon some other clustering methods.The examples of the algorithms are presented in Python 3. We will work with several datasets, including the ones based on real-world data.We will be primarily working with the Scikit-learn and SciPy libraries. But our neural network for clustering, we will build basically from scratch, just by using NumPy arrays. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Nº de ref. del artículo: 9781979086585

Contactar al vendedor

Comprar nuevo

EUR 20,24
Convertir moneda
Gastos de envío: EUR 34,70
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito