Artículos relacionados a Tree-based Machine Learning Algorithms: Decision Trees,...

Tree-based Machine Learning Algorithms: Decision Trees, Random Forests, and Boosting - Tapa blanda

 
9781975860974: Tree-based Machine Learning Algorithms: Decision Trees, Random Forests, and Boosting

Sinopsis

Get a hands-on introduction to building and using decision trees and random forests. Tree-based machine learning algorithms are used to categorize data based on known outcomes in order to facilitate predicting outcomes in new situations. You will learn not only how to use decision trees and random forests for classification and regression, and some of their respective limitations, but also how the algorithms that build them work. Each chapter introduces a new data concern and then walks you through modifying the code, thus building the engine just-in-time. Along the way you will gain experience making decision trees and random forests work for you. This book uses Python, an easy to read programming language, as a medium for teaching you how these algorithms work, but it isn't about teaching you Python, or about using pre-built machine learning libraries specific to Python. It is about teaching you how some of the algorithms inside those kinds of libraries work and why we might use them, and gives you hands-on experience that you can take back to your favorite programming environment.

Table of Contents:

  1. A brief introduction to decision trees
  2. Chapter 1: Branching - uses a greedy algorithm to build a decision tree from data that can be partitioned on a single attribute.
  3. Chapter 2: Multiple Branches - examines several ways to partition data in order to generate multi-level decision trees.
  4. Chapter 3: Continuous Attributes - adds the ability to partition numeric attributes using greater-than.
  5. Chapter 4: Pruning - explore ways of reducing the amount of error encoded in the tree.
  6. Chapter 5: Random Forests - introduces ensemble learning and feature engineering.
  7. Chapter 6: Regression Trees - investigates numeric predictions, like age, price, and miles per gallon.
  8. Chapter 7: Boosting - adjusts the voting power of the randomly selected decision trees in the random forest in order to improve its ability to predict outcomes.

"Sinopsis" puede pertenecer a otra edición de este libro.

Comprar nuevo

Ver este artículo

EUR 11,58 gastos de envío desde Reino Unido a España

Destinos, gastos y plazos de envío

Resultados de la búsqueda para Tree-based Machine Learning Algorithms: Decision Trees,...

Imagen de archivo

Sheppard, Clinton
ISBN 10: 1975860977 ISBN 13: 9781975860974
Nuevo Paperback
Impresión bajo demanda

Librería: Revaluation Books, Exeter, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: Brand New. 152 pages. 9.00x6.00x0.35 inches. This item is printed on demand. Nº de ref. del artículo: zk1975860977

Contactar al vendedor

Comprar nuevo

EUR 16,34
Convertir moneda
Gastos de envío: EUR 11,58
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito