A handy technical introduction to the latest theories and techniques of optimal estimation. It provides readers with extensive coverage of Wiener and Kalman filtering along with a development of least squares estimation, maximum likelihood and maximum a posteriori estimation based on discrete-time measurements. Much emphasis is placed on how they interrelate and fit together to form a systematic development of optimal estimation. Examples and exercises refer to MATLAB software.
"Sinopsis" puede pertenecer a otra edición de este libro.
This book, developed from a set of lecture notes by Professor Kamen, and since expanded and refined by both authors, is an introductory yet comprehensive study of its field. It contains examples that use MATLAB® and many of the problems discussed require the use of MATLAB®. The primary objective is to provide students with an extensive coverage of Wiener and Kalman filtering along with the development of least squares estimation, maximum likelihood estimation and a posteriori estimation, based on discrete-time measurements. In the study of these estimation techniques there is strong emphasis on how they interrelate and fit together to form a systematic development of optimal estimation. Also included in the text is a chapter on nonlinear filtering, focusing on the extended Kalman filter and a recently-developed nonlinear estimator based on a block-form version of the Levenberg-Marquadt Algorithm.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: WorldofBooks, Goring-By-Sea, WS, Reino Unido
Paperback. Condición: Very Good. The book has been read, but is in excellent condition. Pages are intact and not marred by notes or highlighting. The spine remains undamaged. Nº de ref. del artículo: GOR014481379
Cantidad disponible: 1 disponibles
Librería: Anybook.com, Lincoln, Reino Unido
Condición: Fair. This is an ex-library book and may have the usual library/used-book markings inside.This book has soft covers. In fair condition, suitable as a study copy. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,700grams, ISBN:9781852331337. Nº de ref. del artículo: 7098111
Cantidad disponible: 1 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar2912160256483
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 890694-n
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 890694
Cantidad disponible: Más de 20 disponibles
Librería: BennettBooksLtd, San Diego, NV, Estados Unidos de America
Paperback. Condición: New. In shrink wrap. Looks like an interesting title! Nº de ref. del artículo: Q-185233133X
Cantidad disponible: 1 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781852331337_new
Cantidad disponible: Más de 20 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
PF. Condición: New. Nº de ref. del artículo: 6666-IUK-9781852331337
Cantidad disponible: 10 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 890694-n
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Introduction to Optimal Estimation is an introductory but comprehensive treatment of the important topics of Kalman and Wiener filtering. In addition, least-squares, maximum-likelihood and maximum a posteriori (based on discrete-time measurements) estimation are developed, covering a broad range of techniques in a single textbook. Emphasis is placed on showing how these different approaches can be fitted together to form a systematic rationale for optimal estimation. The different matters to be addressed in actually computing estimates and characterizing the properties of estimates viewed as random variables are explained and underlined throughout. The text also incorporates study of nonlinear filtering, focusing on the extended Kalman filter and on a recently-developed nonlinear estimator based on a block-form version of the Levenberg-Marquardt algorithm.Introduction to Optimal Estimation is for use in a single course (or, with judicious pruning, a one-quarter course) on estimation by senior undergraduates or first-year graduate students. A number of the examples in this text were fashioned using MATLAB® and some of the homework problems require it. Students using this book will need to have completed a standard course on probability and random variables and at least one course in signals and systems including state-space theory for linear systems. 400 pp. Englisch. Nº de ref. del artículo: 9781852331337
Cantidad disponible: 2 disponibles