Statistical analysis of data sets usually involves construction of a statistical model of the distribution of data within the available sample – and by extension the distribution of all data of the same category in the world. Statistical models are either parametric or non-parametric – this distinction is based on whether or not the model can be described in terms of a finite-dimensional parameter – and the models must be tested to ascertain whether or not they conform to the data, or are accurate.
This book addresses the testing of hypotheses in non-parametric models in the general case for complete data samples. Classical non-parametric tests (goodness-of-fit, homogeneity, randomness, independence) of complete data are considered, and explained. Tests featured include the chi-squared and modified chi-squared tests, rank and homogeneity tests, and most of the test results are proved, with real applications illustrated using examples. The incorrect use of many tests, and their application using commonly deployed statistical software is highlighted and discussed.
"Sinopsis" puede pertenecer a otra edición de este libro.
Vilijandas Bagdonavicius is Professor of Mathematics at the University of Vilnius in Lithuania. His main research areas are statistics, reliability and survival analysis.
Julius Kruopis is Associate Professor of Mathematics at the University of Vilnius in Lithuania. His main research areas are statistics and quality control.
Mikhail S. Nikulin is a member of the Institute of Mathematics in Bordeaux, France.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: INDOO, Avenel, NJ, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 9781848212695
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 10112877-n
Cantidad disponible: Más de 20 disponibles
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
Hardcover. Condición: new. Hardcover. Statistical analysis of data sets usually involves construction of a statistical model of the distribution of data within the available sample and by extension the distribution of all data of the same category in the world. Statistical models are either parametric or non-parametric this distinction is based on whether or not the model can be described in terms of a finite-dimensional parameter and the models must be tested to ascertain whether or not they conform to the data, or are accurate. This book addresses the testing of hypotheses in non-parametric models in the general case for complete data samples. Classical non-parametric tests (goodness-of-fit, homogeneity, randomness, independence) of complete data are considered, and explained. Tests featured include the chi-squared and modified chi-squared tests, rank and homogeneity tests, and most of the test results are proved, with real applications illustrated using examples. The incorrect use of many tests, and their application using commonly deployed statistical software is highlighted and discussed. This book concerns testing hypotheses in non-parametric models. Classical non-parametric tests (goodness-of-fit, homogeneity, randomness, independence) of complete data are considered. Most of the test results are proved and real applications are illustrated using examples. Theories and exercises are provided. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9781848212695
Cantidad disponible: 1 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
HRD. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: FW-9781848212695
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 10112877
Cantidad disponible: Más de 20 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
Hardcover. Condición: New. Nº de ref. del artículo: 6666-WLY-9781848212695
Cantidad disponible: 1 disponibles
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Condición: New. This book concerns testing hypotheses in non-parametric models. Classical non-parametric tests (goodness-of-fit, homogeneity, randomness, independence) of complete data are considered. Most of the test results are proved and real applications are illustrated using examples. Theories and exercises are provided. Num Pages: 326 pages. BIC Classification: PBK. Category: (P) Professional & Vocational. Dimension: 234 x 163 x 25. Weight in Grams: 628. . 2011. 1st Edition. Hardcover. . . . . Nº de ref. del artículo: V9781848212695
Cantidad disponible: 1 disponibles
Librería: Ubiquity Trade, Miami, FL, Estados Unidos de America
Condición: New. Brand new! Please provide a physical shipping address. Nº de ref. del artículo: 9781848212695
Cantidad disponible: Más de 20 disponibles
Librería: moluna, Greven, Alemania
Gebunden. Condición: New. This book concerns testing hypotheses in non-parametric models. Classical non-parametric tests (goodness-of-fit, homogeneity, randomness, independence) of complete data are considered. Most of the test results are proved and real applications are illustrate. Nº de ref. del artículo: 556580910
Cantidad disponible: 1 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Hardcover. Condición: Brand New. 1st edition. 320 pages. 9.25x6.50x1.00 inches. In Stock. Nº de ref. del artículo: __1848212690
Cantidad disponible: 1 disponibles