Create more effective and powerful data science solutions by learning when, where, and how to apply key math principles that drive most data science algorithms
Data science combines the power of data with the rigor of scientific methodology, with mathematics providing the tools and frameworks for analysis, algorithm development, and deriving insights. As machine learning algorithms become increasingly complex, a solid grounding in math is crucial for data scientists. David Hoyle, with over 30 years of experience in statistical and mathematical modeling, brings unparalleled industrial expertise to this book, drawing from his work in building predictive models for the world's largest retailers.
Encompassing 15 crucial concepts, this book covers a spectrum of mathematical techniques to help you understand a vast range of data science algorithms and applications. Starting with essential foundational concepts, such as random variables and probability distributions, you’ll learn why data varies, and explore matrices and linear algebra to transform that data. Building upon this foundation, the book spans general intermediate concepts, such as model complexity and network analysis, as well as advanced concepts such as kernel-based learning and information theory. Each concept is illustrated with Python code snippets demonstrating their practical application to solve problems.
By the end of the book, you’ll have the confidence to apply key mathematical concepts to your data science challenges.
This book is for data scientists, machine learning engineers, and data analysts who already use data science tools and libraries but want to learn more about the underlying math. Whether you’re looking to build upon the math you already know, or need insights into when and how to adopt tools and libraries to your data science problem, this book is for you. Organized into essential, general, and selected concepts, this book is for both practitioners just starting out on their data science journey and experienced data scientists.
"Sinopsis" puede pertenecer a otra edición de este libro.
David Hoyle has over 30 years' experience in machine learning, statistics, and mathematical modeling. He gained a BSc. degree in mathematics and physics and a Ph.D. in theoretical physics from the University of Bristol. He did research at the University of Cambridge and led his own research groups as an Associate Professor at the University of Exeter and the University of Manchester. Previously, he worked for Lloyds Banking Group - one of the UK's largest retail banks, and as joint Head of Data Science for AutoTrader UK. He now works for the global customer data science company dunnhumby, building statistical and machine learning models for the world's largest retailers, including Tesco UK and Walmart. He lives and works in Manchester, UK.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 17,03 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 6,82 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoLibrería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9781837634187
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781837634187_new
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 48243570
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 48243570-n
Cantidad disponible: Más de 20 disponibles
Librería: Rarewaves.com UK, London, Reino Unido
Paperback. Condición: New. As machine learning algorithms become more powerful, data scientists need a clear grasp of their key components. This book explains the core math principles underpinning the most used algorithms, detailing their importance and practical applications. Nº de ref. del artículo: LU-9781837634187
Cantidad disponible: Más de 20 disponibles
Librería: Rarewaves USA, OSWEGO, IL, Estados Unidos de America
Paperback. Condición: New. As machine learning algorithms become more powerful, data scientists need a clear grasp of their key components. This book explains the core math principles underpinning the most used algorithms, detailing their importance and practical applications. Nº de ref. del artículo: LU-9781837634187
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 48243570-n
Cantidad disponible: Más de 20 disponibles
Librería: Rarewaves USA United, OSWEGO, IL, Estados Unidos de America
Paperback. Condición: New. As machine learning algorithms become more powerful, data scientists need a clear grasp of their key components. This book explains the core math principles underpinning the most used algorithms, detailing their importance and practical applications. Nº de ref. del artículo: LU-9781837634187
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 48243570
Cantidad disponible: Más de 20 disponibles
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
Paperback. Condición: New. As machine learning algorithms become more powerful, data scientists need a clear grasp of their key components. This book explains the core math principles underpinning the most used algorithms, detailing their importance and practical applications. Nº de ref. del artículo: LU-9781837634187
Cantidad disponible: Más de 20 disponibles