Artículos relacionados a Federated Learning with Python: Design and implement...

Federated Learning with Python: Design and implement a federated learning system and develop applications using existing frameworks - Tapa blanda

 
9781803247106: Federated Learning with Python: Design and implement a federated learning system and develop applications using existing frameworks

Sinopsis

Learn the essential skills for building an authentic federated learning system with Python and take your machine learning applications to the next level

Key Features

  • Design distributed systems that can be applied to real-world federated learning applications at scale
  • Discover multiple aggregation schemes applicable to various ML settings and applications
  • Develop a federated learning system that can be tested in distributed machine learning settings

Book Description

Federated learning (FL) is a paradigm-shifting technology in AI that enables and accelerates machine learning (ML), allowing you to work on private data. It has become a must-have solution for most enterprise industries, making it a critical part of your learning journey. This book helps you get to grips with the building blocks of FL and how the systems work and interact with each other using solid coding examples.

FL is more than just aggregating collected ML models and bringing them back to the distributed agents. This book teaches you about all the essential basics of FL and shows you how to design distributed systems and learning mechanisms carefully so as to synchronize the dispersed learning processes and synthesize the locally trained ML models in a consistent manner. This way, you’ll be able to create a sustainable and resilient FL system that can constantly function in real-world operations. This book goes further than simply outlining FL's conceptual framework or theory, as is the case with the majority of research-related literature.

By the end of this book, you’ll have an in-depth understanding of the FL system design and implementation basics and be able to create an FL system and applications that can be deployed to various local and cloud environments.

What you will learn

  • Discover the challenges related to centralized big data ML that we currently face along with their solutions
  • Understand the theoretical and conceptual basics of FL
  • Acquire design and architecting skills to build an FL system
  • Explore the actual implementation of FL servers and clients
  • Find out how to integrate FL into your own ML application
  • Understand various aggregation mechanisms for diverse ML scenarios
  • Discover popular use cases and future trends in FL

Who this book is for

This book is for machine learning engineers, data scientists, and artificial intelligence (AI) enthusiasts who want to learn about creating machine learning applications empowered by federated learning. You’ll need basic knowledge of Python programming and machine learning concepts to get started with this book.

Table of Contents

  1. Challenges in Big Data and Traditional AI
  2. What Is Federated Learning?
  3. Workings of the Federated Learning System
  4. Federated Learning Server Implementation with Python
  5. Federated Learning Client-Side Implementation
  6. Running the Federated Learning System and Analyzing the Results
  7. Model Aggregation
  8. Introducing Existing Federated Learning Frameworks
  9. Case Studies with Key Use Cases of Federated Learning Applications
  10. Future Trends and Developments
  11. Appendix, Exploring Internal Libraries

"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca de los autores

Kiyoshi Nakayama, PhD, is the founder and CEO of TieSet Inc., which leads the development and dissemination of one of the most advanced distributed and federated learning platforms in the world. Before founding TieSet, he was a research scientist at NEC Laboratories America, renowned for having the world's top-notch machine learning research group of researchers. He was also a postdoctoral researcher at Fujitsu Laboratories of America, where he implemented a distributed system for smart energy. He has published several international articles and patents and received the best paper award twice in his career. Kiyoshi received his PhD in computer science from the University of California, Irvine.

George Jeno is a co-founder of TieSet Inc. and has been a tech lead for the development of the STADLE federated learning platform. He has a deep understanding of machine learning theory and system architecture design, and he has leveraged this knowledge to research new algorithms and applications for distributed and federated learning. He holds a master's degree in computer science (with a specialization in machine learning) from Georgia Tech.

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar usado

Condición: Como Nuevo
Unread book in perfect condition...
Ver este artículo

EUR 16,98 gastos de envío desde Estados Unidos de America a España

Destinos, gastos y plazos de envío

Comprar nuevo

Ver este artículo

EUR 4,30 gastos de envío desde Reino Unido a España

Destinos, gastos y plazos de envío

Resultados de la búsqueda para Federated Learning with Python: Design and implement...

Imagen de archivo

Kiyoshi Nakayama PhD
Publicado por Packt Publishing, 2022
ISBN 10: 180324710X ISBN 13: 9781803247106
Nuevo PAP
Impresión bajo demanda

Librería: PBShop.store UK, Fairford, GLOS, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

PAP. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9781803247106

Contactar al vendedor

Comprar nuevo

EUR 47,79
Convertir moneda
Gastos de envío: EUR 4,30
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Kiyoshi Nakayama PhD; George Jeno
Publicado por Packt Publishing, 2022
ISBN 10: 180324710X ISBN 13: 9781803247106
Nuevo Tapa blanda

Librería: California Books, Miami, FL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: I-9781803247106

Contactar al vendedor

Comprar nuevo

EUR 45,50
Convertir moneda
Gastos de envío: EUR 6,80
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

PhD, Kiyoshi Nakayama; Jeno, George
Publicado por Packt Publishing, 2022
ISBN 10: 180324710X ISBN 13: 9781803247106
Nuevo Tapa blanda

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In. Nº de ref. del artículo: ria9781803247106_new

Contactar al vendedor

Comprar nuevo

EUR 47,10
Convertir moneda
Gastos de envío: EUR 5,21
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Kiyoshi Nakayama PhD
Publicado por Packt Publishing, 2022
ISBN 10: 180324710X ISBN 13: 9781803247106
Nuevo PAP
Impresión bajo demanda

Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

PAP. Condición: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9781803247106

Contactar al vendedor

Comprar nuevo

EUR 51,70
Convertir moneda
Gastos de envío: EUR 0,94
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

, Kiyoshi Nakayama
Publicado por Packt Publishing 10/28/2022, 2022
ISBN 10: 180324710X ISBN 13: 9781803247106
Nuevo Paperback or Softback

Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback or Softback. Condición: New. Federated Learning with Python: Design and implement a federated learning system and develop applications using existing frameworks 1.24. Book. Nº de ref. del artículo: BBS-9781803247106

Contactar al vendedor

Comprar nuevo

EUR 44,76
Convertir moneda
Gastos de envío: EUR 10,62
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 5 disponibles

Añadir al carrito

Imagen de archivo

Kiyoshi Nakayama PhD
Publicado por Packt Publishing Limited, 2022
ISBN 10: 180324710X ISBN 13: 9781803247106
Nuevo Paperback / softback
Impresión bajo demanda

Librería: THE SAINT BOOKSTORE, Southport, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 100. Nº de ref. del artículo: C9781803247106

Contactar al vendedor

Comprar nuevo

EUR 51,96
Convertir moneda
Gastos de envío: EUR 4,55
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Kiyoshi Nakayama PhD, George Jeno
Publicado por Packt Publishing Limited, GB, 2022
ISBN 10: 180324710X ISBN 13: 9781803247106
Nuevo Paperback

Librería: Rarewaves.com UK, London, Reino Unido

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: New. Learn the essential skills for building an authentic federated learning system with Python and take your machine learning applications to the next levelKey FeaturesDesign distributed systems that can be applied to real-world federated learning applications at scaleDiscover multiple aggregation schemes applicable to various ML settings and applicationsDevelop a federated learning system that can be tested in distributed machine learning settingsBook DescriptionFederated learning (FL) is a paradigm-shifting technology in AI that enables and accelerates machine learning (ML), allowing you to work on private data. It has become a must-have solution for most enterprise industries, making it a critical part of your learning journey. This book helps you get to grips with the building blocks of FL and how the systems work and interact with each other using solid coding examples.FL is more than just aggregating collected ML models and bringing them back to the distributed agents. This book teaches you about all the essential basics of FL and shows you how to design distributed systems and learning mechanisms carefully so as to synchronize the dispersed learning processes and synthesize the locally trained ML models in a consistent manner. This way, you'll be able to create a sustainable and resilient FL system that can constantly function in real-world operations. This book goes further than simply outlining FL's conceptual framework or theory, as is the case with the majority of research-related literature.By the end of this book, you'll have an in-depth understanding of the FL system design and implementation basics and be able to create an FL system and applications that can be deployed to various local and cloud environments.What you will learnDiscover the challenges related to centralized big data ML that we currently face along with their solutionsUnderstand the theoretical and conceptual basics of FLAcquire design and architecting skills to build an FL systemExplore the actual implementation of FL servers and clientsFind out how to integrate FL into your own ML applicationUnderstand various aggregation mechanisms for diverse ML scenariosDiscover popular use cases and future trends in FLWho this book is forThis book is for machine learning engineers, data scientists, and artificial intelligence (AI) enthusiasts who want to learn about creating machine learning applications empowered by federated learning. You'll need basic knowledge of Python programming and machine learning concepts to get started with this book. Nº de ref. del artículo: LU-9781803247106

Contactar al vendedor

Comprar nuevo

EUR 55,90
Convertir moneda
Gastos de envío: EUR 2,32
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Kiyoshi Nakayama PhD; George Jeno
Publicado por Packt Publishing, 2022
ISBN 10: 180324710X ISBN 13: 9781803247106
Nuevo Tapa blanda

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 44871912-n

Contactar al vendedor

Comprar nuevo

EUR 42,45
Convertir moneda
Gastos de envío: EUR 16,98
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Jeno George Nakayama Kiyoshi
Publicado por Packt Publishing, Limited, 2022
ISBN 10: 180324710X ISBN 13: 9781803247106
Nuevo Tapa blanda
Impresión bajo demanda

Librería: Majestic Books, Hounslow, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Print on Demand pp. 326. Nº de ref. del artículo: 402248835

Contactar al vendedor

Comprar nuevo

EUR 52,38
Convertir moneda
Gastos de envío: EUR 10,28
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Imagen del vendedor

Kiyoshi Nakayama PhD, George Jeno
Publicado por Packt Publishing Limited, GB, 2022
ISBN 10: 180324710X ISBN 13: 9781803247106
Nuevo Paperback

Librería: Rarewaves.com USA, London, LONDO, Reino Unido

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: New. Learn the essential skills for building an authentic federated learning system with Python and take your machine learning applications to the next levelKey FeaturesDesign distributed systems that can be applied to real-world federated learning applications at scaleDiscover multiple aggregation schemes applicable to various ML settings and applicationsDevelop a federated learning system that can be tested in distributed machine learning settingsBook DescriptionFederated learning (FL) is a paradigm-shifting technology in AI that enables and accelerates machine learning (ML), allowing you to work on private data. It has become a must-have solution for most enterprise industries, making it a critical part of your learning journey. This book helps you get to grips with the building blocks of FL and how the systems work and interact with each other using solid coding examples.FL is more than just aggregating collected ML models and bringing them back to the distributed agents. This book teaches you about all the essential basics of FL and shows you how to design distributed systems and learning mechanisms carefully so as to synchronize the dispersed learning processes and synthesize the locally trained ML models in a consistent manner. This way, you'll be able to create a sustainable and resilient FL system that can constantly function in real-world operations. This book goes further than simply outlining FL's conceptual framework or theory, as is the case with the majority of research-related literature.By the end of this book, you'll have an in-depth understanding of the FL system design and implementation basics and be able to create an FL system and applications that can be deployed to various local and cloud environments.What you will learnDiscover the challenges related to centralized big data ML that we currently face along with their solutionsUnderstand the theoretical and conceptual basics of FLAcquire design and architecting skills to build an FL systemExplore the actual implementation of FL servers and clientsFind out how to integrate FL into your own ML applicationUnderstand various aggregation mechanisms for diverse ML scenariosDiscover popular use cases and future trends in FLWho this book is forThis book is for machine learning engineers, data scientists, and artificial intelligence (AI) enthusiasts who want to learn about creating machine learning applications empowered by federated learning. You'll need basic knowledge of Python programming and machine learning concepts to get started with this book. Nº de ref. del artículo: LU-9781803247106

Contactar al vendedor

Comprar nuevo

EUR 62,06
Convertir moneda
Gastos de envío: EUR 2,32
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Existen otras 5 copia(s) de este libro

Ver todos los resultados de su búsqueda