Conquer data hurdles, supercharge your ML journey, and become a leader in your field with synthetic data generation techniques, best practices, and case studies
The machine learning (ML) revolution has made our world unimaginable without its products and services. However, training ML models requires vast datasets, which entails a process plagued by high costs, errors, and privacy concerns associated with collecting and annotating real data. Synthetic data emerges as a promising solution to all these challenges.
This book is designed to bridge theory and practice of using synthetic data, offering invaluable support for your ML journey. Synthetic Data for Machine Learning empowers you to tackle real data issues, enhance your ML models' performance, and gain a deep understanding of synthetic data generation. You’ll explore the strengths and weaknesses of various approaches, gaining practical knowledge with hands-on examples of modern methods, including Generative Adversarial Networks (GANs) and diffusion models. Additionally, you’ll uncover the secrets and best practices to harness the full potential of synthetic data.
By the end of this book, you’ll have mastered synthetic data and positioned yourself as a market leader, ready for more advanced, cost-effective, and higher-quality data sources, setting you ahead of your peers in the next generation of ML.
If you are a machine learning (ML) practitioner or researcher who wants to overcome data problems, this book is for you. Basic knowledge of ML and Python programming is required. The book is one of the pioneer works on the subject, providing leading-edge support for ML engineers, researchers, companies, and decision makers.
"Sinopsis" puede pertenecer a otra edición de este libro.
Abdulrahman Kerim is a full-time lecturer at UCA and an active researcher at the School of Computing and Communications at Lancaster University, UK. Kerim has an MSc in Computer Engineering with a focus on developing a simulator for computer vision problems. In 2020, Kerim commenced his PhD to investigate synthetic data advantages and potentials. His research on developing novel synthetic-aware computer vision models has been recognized internationally. He published several papers on the usability of synthetic data at top-tier conferences and journals, such as BMVC and IMAVIS. He is currently working with researchers from Google and Microsoft to overcome real-data issues specifically for video stabilization and semantic segmentation tasks.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 6,82 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoLibrería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9781803245409
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
PAP. Condición: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9781803245409
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9781803245409
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781803245409_new
Cantidad disponible: Más de 20 disponibles
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
Paperback or Softback. Condición: New. Synthetic Data for Machine Learning: Revolutionize your approach to machine learning with this comprehensive conceptual guide 0.81. Book. Nº de ref. del artículo: BBS-9781803245409
Cantidad disponible: 5 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 526. Nº de ref. del artículo: C9781803245409
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Conquer data hurdles, supercharge your ML journey, and become a leader in your field with synthetic data generation techniques, best practices, and case studiesKey Features:Avoid common data issues by identifying and solving them using synthetic data-based solutionsMaster synthetic data generation approaches to prepare for the future of machine learningEnhance performance, reduce budget, and stand out from competitors using synthetic dataPurchase of the print or Kindle book includes a free PDF Elektronisches BuchBook Description:The machine learning (ML) revolution has made our world unimaginable without its products and services. However, training ML models requires vast datasets, which entails a process plagued by high costs, errors, and privacy concerns associated with collecting and annotating real data. Synthetic data emerges as a promising solution to all these challenges.This book is designed to bridge theory and practice of using synthetic data, offering invaluable support for your ML journey. Synthetic Data for Machine Learning empowers you to tackle real data issues, enhance your ML models' performance, and gain a deep understanding of synthetic data generation. You'll explore the strengths and weaknesses of various approaches, gaining practical knowledge with hands-on examples of modern methods, including Generative Adversarial Networks (GANs) and diffusion models. Additionally, you'll uncover the secrets and best practices to harness the full potential of synthetic data.By the end of this book, you'll have mastered synthetic data and positioned yourself as a market leader, ready for more advanced, cost-effective, and higher-quality data sources, setting you ahead of your peers in the next generation of ML.What You Will Learn:Understand real data problems, limitations, drawbacks, and pitfallsHarness the potential of synthetic data for data-hungry ML modelsDiscover state-of-the-art synthetic data generation approaches and solutionsUncover synthetic data potential by working on diverse case studiesUnderstand synthetic data challenges and emerging research topicsApply synthetic data to your ML projects successfullyWho this book is for:¿If you are a machine learning (ML) practitioner or researcher who wants to overcome data problems, this book is for you. Basic knowledge of ML and Python programming is required. The book is one of the pioneer works on the subject, providing leading-edge support for ML engineers, researchers, companies, and decision makers. Nº de ref. del artículo: 9781803245409
Cantidad disponible: 1 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 26401622068
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand. Nº de ref. del artículo: 394787819
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND. Nº de ref. del artículo: 18401622078
Cantidad disponible: 4 disponibles