During these uncertain and turbulent times, intelligent technologies including artificial neural networks (ANN) and machine learning (ML) have played an incredible role in being able to predict, analyze, and navigate unprecedented circumstances across a number of industries, ranging from healthcare to hospitality. Multi-factor prediction in particular has been especially helpful in dealing with the most current pressing issues such as COVID-19 prediction, pneumonia detection, cardiovascular diagnosis and disease management, automobile accident prediction, and vacation rental listing analysis. To date, there has not been much research content readily available in these areas, especially content written extensively from a user perspective. Biomedical and Business Applications Using Artificial Neural Networks and Machine Learning is designed to cover a brief and focused range of essential topics in the field with perspectives, models, and first-hand experiences shared by prominent researchers, discussing applications of artificial neural networks (ANN) and machine learning (ML) for biomedical and business applications and a listing of current open-source software for neural networks, machine learning, and artificial intelligence. It also presents summaries of currently available open source software that utilize neural networks and machine learning. The book is ideal for professionals, researchers, students, and practitioners who want to more fully understand in a brief and concise format the realm and technologies of artificial neural networks (ANN) and machine learning (ML) and how they have been used for prediction of multi-disciplinary research problems in a multitude of disciplines.
"Sinopsis" puede pertenecer a otra edición de este libro.
Dr. Richard S. Segall is Professor of Information Systems and Business Analytics in Neil Griffin College of Business at Arkansas State University in Jonesboro, AR where he also taught for ten years in the College of Engineering & Computer Science Master of Engineering Management (MEM) Program and is Affiliated Faculty of the Environmental Sciences Program and Center for No-Boundary Thinking (CNBT). He is also an Affiliated Faculty at the University of Arkansas at Little Rock (UALR) where he serves on thesis committees. His research interests include data mining, text mining, web mining, database management, Big Data, and mathematical modeling. His research has been funded by National Research Council (NRC), U.S. Air Force (USAF), National Aeronautical and Space Administration (NASA), Arkansas Biosciences Institute (ABI), and Arkansas Science & Technology Authority (ASTA). His publications have appeared in IGI Global journals of: International Journal of Fog Computing (IJFC), International Journal of Open Source Software and Processes (IJOSP), and International Journal of Big Data and Analytics in Healthcare (IJBDAH). He is also a member of the Editorial Review Board for the International Journal of Fog Computing (IJFC).
Gao Niu is an Assistant Professor in Actuarial Science and Program Coordinator of Actuarial Math Program at Bryant University. He also serves as the Faculty Consultant of the Janet & Mark L Goldenson Center for Actuarial Research at the University of Connecticut. He has a doctorate in actuarial science from the University of Connecticut, is an Associate of the Casualty Actuarial Society and a Member of the American Academy of Actuaries. Dr. Niu has years of experience in academic actuarial research and consulting practice. His research area includes but not limited to the following: big data analytics application in insurance industry, property and casualty insurance practice, predictive modeling, agent-based modeling, financial planning, life insurance and health insurance pricing, reserving and data mining.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 4,72 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781799884569_new
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9781799884569
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
PAP. Condición: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9781799884569
Cantidad disponible: Más de 20 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Covers a range of topics in the field with perspectives, models, and first-hand experiences shared by researchers, discussing applications of artificial neural networks and machine learning for biomedical and business applications and a listing of current o. Nº de ref. del artículo: 538930228
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - During these uncertain and turbulent times, intelligent technologies including artificial neural networks (ANN) and machine learning (ML) have played an incredible role in being able to predict, analyze, and navigate unprecedented circumstances across a number of industries, ranging from healthcare to hospitality. Multi-factor prediction in particular has been especially helpful in dealing with the most current pressing issues such as COVID-19 prediction, pneumonia detection, cardiovascular diagnosis and disease management, automobile accident prediction, and vacation rental listing analysis. To date, there has not been much research content readily available in these areas, especially content written extensively from a user perspective. Biomedical and Business Applications Using Artificial Neural Networks and Machine Learning is designed to cover a brief and focused range of essential topics in the field with perspectives, models, and first-hand experiences shared by prominent researchers, discussing applications of artificial neural networks (ANN) and machine learning (ML) for biomedical and business applications and a listing of current open-source software for neural networks, machine learning, and artificial intelligence. It also presents summaries of currently available open source software that utilize neural networks and machine learning. The book is ideal for professionals, researchers, students, and practitioners who want to more fully understand in a brief and concise format the realm and technologies of artificial neural networks (ANN) and machine learning (ML) and how they have been used for prediction of multi-disciplinary research problems in a multitude of disciplines. Nº de ref. del artículo: 9781799884569
Cantidad disponible: 1 disponibles