Learn advanced state-of-the-art deep learning techniques and their applications using popular Python libraries
Key Features
Book Description
With the surge in artificial intelligence in applications catering to both business and consumer needs, deep learning is more important than ever for meeting current and future market demands. With this book, you'll explore deep learning, and learn how to put machine learning to use in your projects.
This second edition of Python Deep Learning will get you up to speed with deep learning, deep neural networks, and how to train them with high-performance algorithms and popular Python frameworks. You'll uncover different neural network architectures, such as convolutional networks, recurrent neural networks, long short-term memory (LSTM) networks, and capsule networks. You'll also learn how to solve problems in the fields of computer vision, natural language processing (NLP), and speech recognition. You'll study generative model approaches such as variational autoencoders and Generative Adversarial Networks (GANs) to generate images. As you delve into newly evolved areas of reinforcement learning, you'll gain an understanding of state-of-the-art algorithms that are the main components behind popular games Go, Atari, and Dota.
By the end of the book, you will be well-versed with the theory of deep learning along with its real-world applications.
What you will learn
This book is for data science practitioners, machine learning engineers, and those interested in deep learning who have a basic foundation in machine learning and some Python programming experience. A background in mathematics and conceptual understanding of calculus and statistics will help you gain maximum benefit from this book.
"Sinopsis" puede pertenecer a otra edición de este libro.
Ivan Vasilev started working on the first open source Java Deep Learning library with GPU support in 2013. The library was acquired by a German company, where he continued its development. He has also worked as a machine learning engineer and researcher in the area of medical image classification and segmentation with deep neural networks. Since 2017 he has focused on financial machine learning. He is working on a Python open source algorithmic trading library, which provides the infrastructure to experiment with different ML algorithms. The author holds an MSc degree in Artificial Intelligence from The University of Sofia, St. Kliment Ohridski.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 5,50 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoEUR 6,93 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoLibrería: medimops, Berlin, Alemania
Condición: very good. Gut/Very good: Buch bzw. Schutzumschlag mit wenigen Gebrauchsspuren an Einband, Schutzumschlag oder Seiten. / Describes a book or dust jacket that does show some signs of wear on either the binding, dust jacket or pages. Nº de ref. del artículo: M01789348463-V
Cantidad disponible: 1 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9781789348460
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781789348460_new
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: IQ-9781789348460
Cantidad disponible: 15 disponibles
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
PAP. Condición: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: IQ-9781789348460
Cantidad disponible: 15 disponibles
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
Paperback or Softback. Condición: New. Python Deep Learning - Second Edition: Exploring deep learning techniques and neural network architectures with PyTorch, Keras, and TensorFlow, 2nd Ed 1.46. Book. Nº de ref. del artículo: BBS-9781789348460
Cantidad disponible: 5 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
Paperback. Condición: New. Nº de ref. del artículo: 6666-IUK-9781789348460
Cantidad disponible: 10 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand. Nº de ref. del artículo: 370808940
Cantidad disponible: 4 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The book will help you learn deep neural networks and their applications in computer vision, generative models, and natural language processing. It will also introduce you to the area of reinforcement learning, where you ll learn the state-of-the-art algori. Nº de ref. del artículo: 267049261
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Learn advanced state-of-the-art deep learning techniques and their applications using popular Python librariesKey FeaturesBuild a strong foundation in neural networks and deep learning with Python librariesExplore advanced deep learning techniques and their applications across computer vision and NLPLearn how a computer can navigate in complex environments with reinforcement learningBook DescriptionWith the surge in artificial intelligence in applications catering to both business and consumer needs, deep learning is more important than ever for meeting current and future market demands. With this book, you'll explore deep learning, and learn how to put machine learning to use in your projects.This second edition of Python Deep Learning will get you up to speed with deep learning, deep neural networks, and how to train them with high-performance algorithms and popular Python frameworks. You'll uncover different neural network architectures, such as convolutional networks, recurrent neural networks, long short-term memory (LSTM) networks, and capsule networks. You'll also learn how to solve problems in the fields of computer vision, natural language processing (NLP), and speech recognition. You'll study generative model approaches such as variational autoencoders and Generative Adversarial Networks (GANs) to generate images. As you delve into newly evolved areas of reinforcement learning, you'll gain an understanding of state-of-the-art algorithms that are the main components behind popular games Go, Atari, and Dota.By the end of the book, you will be well-versed with the theory of deep learning along with its real-world applications.What you will learnGrasp the mathematical theory behind neural networks and deep learning processesInvestigate and resolve computer vision challenges using convolutional networks and capsule networksSolve generative tasks using variational autoencoders and Generative Adversarial NetworksImplement complex NLP tasks using recurrent networks (LSTM and GRU) and attention modelsExplore reinforcement learning and understand how agents behave in a complex environmentGet up to date with applications of deep learning in autonomous vehiclesWho this book is forThis book is for data science practitioners, machine learning engineers, and those interested in deep learning who have a basic foundation in machine learning and some Python programming experience. A background in mathematics and conceptual understanding of calculus and statistics will help you gain maximum benefit from this book. Nº de ref. del artículo: 9781789348460
Cantidad disponible: 1 disponibles