Transform games into environments using machine learning and Deep learning with Tensorflow, Keras, and Unity
Unity Machine Learning agents allow researchers and developers to create games and simulations using the Unity Editor, which serves as an environment where intelligent agents can be trained with machine learning methods through a simple-to-use Python API.
This book takes you from the basics of Reinforcement and Q Learning to building Deep Recurrent Q-Network agents that cooperate or compete in a multi-agent ecosystem. You will start with the basics of Reinforcement Learning and how to apply it to problems. Then you will learn how to build self-learning advanced neural networks with Python and Keras/TensorFlow. From there you move o n to more advanced training scenarios where you will learn further innovative ways to train your network with A3C, imitation, and curriculum learning models. By the end of the book, you will have learned how to build more complex environments by building a cooperative and competitive multi-agent ecosystem.
This book is intended for developers with an interest in using Machine learning algorithms to develop better games and simulations with Unity.
"Sinopsis" puede pertenecer a otra edición de este libro.
Transform games into environments using machine learning and Deep learning with Tensorflow, Keras, and Unity Key Features Learn how to apply core machine learning concepts to your games with Unity Learn the Fundamentals of Reinforcement Learning and Q-Learning and apply them to your games Learn How to build multiple asynchronous agents and run them in a training scenario Book DescriptionUnity Machine Learning agents allow researchers and developers to create games and simulations using the Unity Editor, which serves as an environment where intelligent agents can be trained with machine learning methods through a simple-to-use Python API. This book takes you from the basics of Reinforcement and Q Learning to building Deep Recurrent Q-Network agents that cooperate or compete in a multi-agent ecosystem. You will start with the basics of Reinforcement Learning and how to apply it to problems. Then you will learn how to build self-learning advanced neural networks with Python and Keras/TensorFlow. From there you move o n to more advanced training scenarios where you will learn further innovative ways to train your network with A3C, imitation, and curriculum learning models. By the end of the book, you will have learned how to build more complex environments by building a cooperative and competitive multi-agent ecosystem. What you will learn Develop Reinforcement and Deep Reinforcement Learning for games. Understand complex and advanced concepts of reinforcement learning and neural networks Explore various training strategies for cooperative and competitive agent development Adapt the basic script components of Academy, Agent, and Brain to be used with Q Learning. Enhance the Q Learning model with improved training strategies such as Greedy-Epsilon exploration Implement a simple NN with Keras and use it as an external brain in Unity Understand how to add LTSM blocks to an existing DQN Build multiple asynchronous agents and run them in a training scenario Who this book is forThis book is intended for developers with an interest in using Machine learning algorithms to develop better games and simulations with Unity. The reader will be required to have a working knowledge of C# and a basic understanding of Python.
Micheal Lanham is a proven software architect with 20 years' experience of developing a range of software, including games, mobile, graphic, web, desktop, engineering, GIS, and machine learning applications for various industries. In 2000, Micheal began working with machine learning and would later use various technologies for a broad range of apps, from geomechanics to inspecting pipelines in 3D. He was later introduced to Unity and has been an avid developer and author of multiple Unity apps and books since.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 2,26 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoEUR 3,41 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: Textbooks_Source, Columbia, MO, Estados Unidos de America
paperback. Condición: New. Ships in a BOX from Central Missouri! UPS shipping for most packages, (Priority Mail for AK/HI/APO/PO Boxes). Nº de ref. del artículo: 008757330N
Cantidad disponible: 3 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar2912160183281
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 33209908-n
Cantidad disponible: 3 disponibles
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
Paperback or Softback. Condición: New. Learn Unity ML - Agents - Fundamentals of Unity Machine Learning 0.79. Book. Nº de ref. del artículo: BBS-9781789138139
Cantidad disponible: 5 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 33209908
Cantidad disponible: 3 disponibles
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
PAP. Condición: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9781789138139
Cantidad disponible: Más de 20 disponibles
Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America
Paperback. Condición: new. Paperback. Transform games into environments using machine learning and Deep learning with Tensorflow, Keras, and Unity Key Features Learn how to apply core machine learning concepts to your games with Unity Learn the Fundamentals of Reinforcement Learning and Q-Learning and apply them to your games Learn How to build multiple asynchronous agents and run them in a training scenario Book Description Unity Machine Learning agents allow researchers and developers to create games and simulations using the Unity Editor, which serves as an environment where intelligent agents can be trained with machine learning methods through a simple-to-use Python API. This book takes you from the basics of Reinforcement and Q Learning to building Deep Recurrent Q-Network agents that cooperate or compete in a multi-agent ecosystem. You will start with the basics of Reinforcement Learning and how to apply it to problems. Then you will learn how to build self-learning advanced neural networks with Python and Keras/TensorFlow. From there you move o n to more advanced training scenarios where you will learn further innovative ways to train your network with A3C, imitation, and curriculum learning models. By the end of the book, you will have learned how to build more complex environments by building a cooperative and competitive multi-agent ecosystem. What you will learn Develop Reinforcement and Deep Reinforcement Learning for games. Understand complex and advanced concepts of reinforcement learning and neural networks Explore various training strategies for cooperative and competitive agent development Adapt the basic script components of Academy, Agent, and Brain to be used with Q Learning. Enhance the Q Learning model with improved training strategies such as Greedy-Epsilon exploration Implement a simple NN with Keras and use it as an external brain in Unity Understand how to add LTSM blocks to an existing DQN Build multiple asynchronous agents and run them in a training scenario Who this book is for This book is intended for developers with an interest in using Machine learning algorithms to develop better games and simulations with Unity. The reader will be required to have a working knowledge of C# and a basic understanding of Python. Unity Machine Learning Agents allows researchers and developers to create games and simulations using the Unity Editor which serve as environments where intelligent agents can be trained with machine learning methods through a simple-to-use Python API. This book takes you from the basics of Reinforcement and Q Learning to building Deep . Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9781789138139
Cantidad disponible: 1 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9781789138139
Cantidad disponible: Más de 20 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 204. Nº de ref. del artículo: 26379182247
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. 204. Nº de ref. del artículo: 384721784
Cantidad disponible: 4 disponibles