With Hands-On Recommendation Systems with Python, learn the tools and techniques required in building various kinds of powerful recommendation systems (collaborative, knowledge and content based) and deploying them to the web
Key FeaturesRecommendation systems are at the heart of almost every internet business today; from Facebook to Netflix to Amazon. Providing good recommendations, whether it's friends, movies, or groceries, goes a long way in defining user experience and enticing your customers to use your platform.
This book shows you how to do just that. You will learn about the different kinds of recommenders used in the industry and see how to build them from scratch using Python. No need to wade through tons of machine learning theory―you'll get started with building and learning about recommenders as quickly as possible..
In this book, you will build an IMDB Top 250 clone, a content-based engine that works on movie metadata. You'll use collaborative filters to make use of customer behavior data, and a Hybrid Recommender that incorporates content based and collaborative filtering techniques
With this book, all you need to get started with building recommendation systems is a familiarity with Python, and by the time you're fnished, you will have a great grasp of how recommenders work and be in a strong position to apply the techniques that you will learn to your own problem domains.
What you will learnIf you are a Python developer and want to develop applications for social networking, news personalization or smart advertising, this is the book for you. Basic knowledge of machine learning techniques will be helpful, but not mandatory.
"Sinopsis" puede pertenecer a otra edición de este libro.
Rounak Banik is a Young India Fellow and an ECE graduate from IIT Roorkee. He has worked as a software engineer at Parceed, a New York start-up, and Springboard, an EdTech start-up based in San Francisco and Bangalore. He has also served as a backend development instructor at Acadview, teaching Python and Django to around 35 college students from Delhi and Dehradun. He is an alumni of Springboard's data science career track. He has given talks at the SciPy India Conference and published popular tutorials on Kaggle and DataCamp.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 4,46 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 0,78 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoLibrería: ThriftBooks-Atlanta, AUSTELL, GA, Estados Unidos de America
Paperback. Condición: Good. No Jacket. Pages can have notes/highlighting. Spine may show signs of wear. ~ ThriftBooks: Read More, Spend Less 0.7. Nº de ref. del artículo: G1788993756I3N00
Cantidad disponible: 1 disponibles
Librería: -OnTimeBooks-, Phoenix, AZ, Estados Unidos de America
Condición: very_good. Gently read. May have name of previous ownership, or ex-library edition. Binding tight; spine straight and smooth, with no creasing; covers clean and crisp. Minimal signs of handling or shelving. 100% GUARANTEE! Shipped with delivery confirmation, if youâre not satisfied with purchase please return item for full refund. Ships USPS Media Mail. Nº de ref. del artículo: OTV.1788993756.VG
Cantidad disponible: 1 disponibles
Librería: Better World Books, Mishawaka, IN, Estados Unidos de America
Condición: Good. Used book that is in clean, average condition without any missing pages. Nº de ref. del artículo: 18310840-6
Cantidad disponible: 3 disponibles
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
PAP. Condición: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9781788993753
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9781788993753
Cantidad disponible: Más de 20 disponibles
Librería: Rarewaves.com UK, London, Reino Unido
Paperback. Condición: New. With Hands-On Recommendation Systems with Python, learn the tools and techniques required in building various kinds of powerful recommendation systems (collaborative, knowledge and content based) and deploying them to the webKey FeaturesBuild industry-standard recommender systemsOnly familiarity with Python is requiredNo need to wade through complicated machine learning theory to use this bookBook DescriptionRecommendation systems are at the heart of almost every internet business today; from Facebook to Net?ix to Amazon. Providing good recommendations, whether it's friends, movies, or groceries, goes a long way in defining user experience and enticing your customers to use your platform.This book shows you how to do just that. You will learn about the different kinds of recommenders used in the industry and see how to build them from scratch using Python. No need to wade through tons of machine learning theory-you'll get started with building and learning about recommenders as quickly as possible.In this book, you will build an IMDB Top 250 clone, a content-based engine that works on movie metadata. You'll use collaborative filters to make use of customer behavior data, and a Hybrid Recommender that incorporates content based and collaborative filtering techniques With this book, all you need to get started with building recommendation systems is a familiarity with Python, and by the time you're fnished, you will have a great grasp of how recommenders work and be in a strong position to apply the techniques that you will learn to your own problem domains.What you will learnGet to grips with the different kinds of recommender systemsMaster data-wrangling techniques using the pandas libraryBuilding an IMDB Top 250 CloneBuild a content based engine to recommend movies based on movie metadataEmploy data-mining techniques used in building recommendersBuild industry-standard collaborative filters using powerful algorithmsBuilding Hybrid Recommenders that incorporate content based and collaborative flteringWho this book is forIf you are a Python developer and want to develop applications for social networking, news personalization or smart advertising, this is the book for you. Basic knowledge of machine learning techniques will be helpful, but not mandatory. Nº de ref. del artículo: LU-9781788993753
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781788993753_new
Cantidad disponible: Más de 20 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 100. Nº de ref. del artículo: C9781788993753
Cantidad disponible: Más de 20 disponibles
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
Paperback or Softback. Condición: New. Hands-On Recommendation Systems with Python 0.58. Book. Nº de ref. del artículo: BBS-9781788993753
Cantidad disponible: 5 disponibles
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
Paperback. Condición: New. With Hands-On Recommendation Systems with Python, learn the tools and techniques required in building various kinds of powerful recommendation systems (collaborative, knowledge and content based) and deploying them to the webKey FeaturesBuild industry-standard recommender systemsOnly familiarity with Python is requiredNo need to wade through complicated machine learning theory to use this bookBook DescriptionRecommendation systems are at the heart of almost every internet business today; from Facebook to Net?ix to Amazon. Providing good recommendations, whether it's friends, movies, or groceries, goes a long way in defining user experience and enticing your customers to use your platform.This book shows you how to do just that. You will learn about the different kinds of recommenders used in the industry and see how to build them from scratch using Python. No need to wade through tons of machine learning theory-you'll get started with building and learning about recommenders as quickly as possible.In this book, you will build an IMDB Top 250 clone, a content-based engine that works on movie metadata. You'll use collaborative filters to make use of customer behavior data, and a Hybrid Recommender that incorporates content based and collaborative filtering techniques With this book, all you need to get started with building recommendation systems is a familiarity with Python, and by the time you're fnished, you will have a great grasp of how recommenders work and be in a strong position to apply the techniques that you will learn to your own problem domains.What you will learnGet to grips with the different kinds of recommender systemsMaster data-wrangling techniques using the pandas libraryBuilding an IMDB Top 250 CloneBuild a content based engine to recommend movies based on movie metadataEmploy data-mining techniques used in building recommendersBuild industry-standard collaborative filters using powerful algorithmsBuilding Hybrid Recommenders that incorporate content based and collaborative flteringWho this book is forIf you are a Python developer and want to develop applications for social networking, news personalization or smart advertising, this is the book for you. Basic knowledge of machine learning techniques will be helpful, but not mandatory. Nº de ref. del artículo: LU-9781788993753
Cantidad disponible: Más de 20 disponibles