Build strong foundation for entering the world of Machine Learning and data science with the help of this comprehensive guide
Key Features
Book Description
As the amount of data continues to grow at an almost incomprehensible rate, being able to understand and process data is becoming a key differentiator for competitive organizations. Machine learning applications are everywhere, from self-driving cars, spam detection, document search, and trading strategies, to speech recognition. This makes machine learning well-suited to the present-day era of Big Data and Data Science. The main challenge is how to transform data into actionable knowledge.
In this book you will learn all the important Machine Learning algorithms that are commonly used in the field of data science. These algorithms can be used for supervised as well as unsupervised learning, reinforcement learning, and semi-supervised learning. A few famous algorithms that are covered in this book are Linear regression, Logistic Regression, SVM, Naive Bayes, K-Means, Random Forest, TensorFlow, and Feature engineering. In this book you will also learn how these algorithms work and their practical implementation to resolve your problems. This book will also introduce you to the Natural Processing Language and Recommendation systems, which help you run multiple algorithms simultaneously.
On completion of the book you will have mastered selecting Machine Learning algorithms for clustering, classification, or regression based on for your problem.
What You Will Learn
Who This Book Is For
This book is for IT professionals who want to enter the field of data science and are very new to Machine Learning. Familiarity with languages such as R and Python will be invaluable here.
"Sinopsis" puede pertenecer a otra edición de este libro.
Balaji Venkateswaran is an AI expert, data scientist, machine learning practitioner, and database architect. He has 17+ years of experience in investment banking payment processing, telecom billing, and project management. He has worked for major companies such as ADP, Goldman Sachs, MasterCard, and Wipro. Balaji is a trainer in data science, Hadoop, and Tableau. He holds a postgraduate degree PG in business analytics from Great Lakes Institute of Management, Chennai. Balaji has expertise relating to statistics, classification, regression, pattern recognition, time series forecasting, and unstructured data analysis using text mining procedures. His main interests are neural networks and deep learning. Balaji holds various certifications in IBM SPSS, IBM Watson, IBM big data architect, cloud architect, CEH, Splunk, Salesforce, Agile CSM, and AWS. If you have any questions, don't hesitate to message him on LinkedIn (balvenkateswaran); he will be more than glad to help fellow data scientists.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 8,13 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoEUR 4,23 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: WeBuyBooks, Rossendale, LANCS, Reino Unido
Condición: Like New. Most items will be dispatched the same or the next working day. An apparently unread copy in perfect condition. Dust cover is intact with no nicks or tears. Spine has no signs of creasing. Pages are clean and not marred by notes or folds of any kind. Nº de ref. del artículo: wbs2830482077
Cantidad disponible: 1 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9781788397872
Cantidad disponible: Más de 20 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9781788397872
Cantidad disponible: Más de 20 disponibles
Librería: ChouetteCoop, Kervignac, Francia
Condición: Used: Good. Occasion - Bon Etat - Neural networks with R (2017) - Grand Format. Nº de ref. del artículo: 3247130
Cantidad disponible: 1 disponibles
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
Paperback or Softback. Condición: New. Neural Networks with R 1.03. Book. Nº de ref. del artículo: BBS-9781788397872
Cantidad disponible: 5 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 526. Nº de ref. del artículo: C9781788397872
Cantidad disponible: Más de 20 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
PF. Condición: New. Nº de ref. del artículo: 6666-IUK-9781788397872
Cantidad disponible: 10 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand. Nº de ref. del artículo: 370433494
Cantidad disponible: 4 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Über den AutorrnrnBalaji Venkateswaran is an AI expert, data scientist, machine learning practitioner, and database architect. He has 17+ years of experience in investment banking payment processing, telecom billing, and project management. Nº de ref. del artículo: 516816105
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Build strong foundation for entering the world of Machine Learning and data science with the help of this comprehensive guideKey FeaturesGet started in the field of Machine Learning with the help of this solid, concept-rich, yet highly practical guide.Your one-stop solution for everything that matters in mastering the whats and whys of Machine Learning algorithms and their implementation.Get a solid foundation for your entry into Machine Learning by strengthening your roots (algorithms) with this comprehensive guide.Book DescriptionAs the amount of data continues to grow at an almost incomprehensible rate, being able to understand and process data is becoming a key differentiator for competitive organizations. Machine learning applications are everywhere, from self-driving cars, spam detection, document search, and trading strategies, to speech recognition. This makes machine learning well-suited to the present-day era of Big Data and Data Science. The main challenge is how to transform data into actionable knowledge.In this book you will learn all the important Machine Learning algorithms that are commonly used in the field of data science. These algorithms can be used for supervised as well as unsupervised learning, reinforcement learning, and semi-supervised learning. A few famous algorithms that are covered in this book are Linear regression, Logistic Regression, SVM, Naive Bayes, K-Means, Random Forest, TensorFlow, and Feature engineering. In this book you will also learn how these algorithms work and their practical implementation to resolve your problems. This book will also introduce you to the Natural Processing Language and Recommendation systems, which help you run multiple algorithms simultaneously.On completion of the book you will have mastered selecting Machine Learning algorithms for clustering, classification, or regression based on for your problem.What You Will LearnAcquaint yourself with important elements of Machine LearningUnderstand the feature selection and feature engineering processAssess performance and error trade-offs for Linear RegressionBuild a data model and understand how it works by using different types of algorithmLearn to tune the parameters of Support Vector machinesImplement clusters to a datasetExplore the concept of Natural Processing Language and Recommendation SystemsCreate a ML architecture from scratch.Who This Book Is ForThis book is for IT professionals who want to enter the field of data science and are very new to Machine Learning. Familiarity with languages such as R and Python will be invaluable here. Nº de ref. del artículo: 9781788397872
Cantidad disponible: 1 disponibles