Publisher's Note: This edition from 2017 is outdated and is not compatible with TensorFlow 2 or any of the most recent updates to Python libraries. A new second edition, updated for 2020 and featuring TensorFlow 2, the Keras API, CNNs, GANs, RNNs, NLP, and AutoML, has now been published.
Key Features:
Book Description:
This book starts by introducing you to supervised learning algorithms such as simple linear regression, the classical multilayer perceptron and more sophisticated deep convolutional networks. You will also explore image processing with recognition of handwritten digit images, classification of images into different categories, and advanced objects recognition with related image annotations. An example of identification of salient points for face detection is also provided.
Next you will be introduced to Recurrent Networks, which are optimized for processing sequence data such as text, audio or time series. Following that, you will learn about unsupervised learning algorithms such as Autoencoders and the very popular Generative Adversarial Networks (GANs). You will also explore non-traditional uses of neural networks as Style Transfer.
Finally, you will look at reinforcement learning and its application to AI game playing, another popular direction of research and application of neural networks.
What You Will Learn:
Who this book is for:
If you are a data scientist with experience in machine learning or an AI programmer with some exposure to neural networks, you will find this book a useful entry point to deep-learning with Keras. A knowledge of Python is required for this book.
"Sinopsis" puede pertenecer a otra edición de este libro.
Antonio Gulli is the Engineering Director for the Office of the CTO, Google Cloud. Previously, he served as Google Warsaw Site leader doubling the size of the engineering site.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 8,21 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoEUR 4,67 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: WeBuyBooks, Rossendale, LANCS, Reino Unido
Condición: Very Good. Most items will be dispatched the same or the next working day. A copy that has been read, but is in excellent condition. Pages are intact and not marred by notes or highlighting. The spine remains undamaged. Nº de ref. del artículo: wbs7090117494
Cantidad disponible: 1 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781787128422_new
Cantidad disponible: Más de 20 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9781787128422
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
UNK. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: GB-9781787128422
Cantidad disponible: 1 disponibles
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
UNK. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: GB-9781787128422
Cantidad disponible: 1 disponibles
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Condición: New. 2017. paperback. . . . . . Nº de ref. del artículo: V9781787128422
Cantidad disponible: 1 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. New copy - Usually dispatched within 3 working days. 526. Nº de ref. del artículo: B9781787128422
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 29352594-n
Cantidad disponible: Más de 20 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 526. Nº de ref. del artículo: C9781787128422
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Publisher's Note: This edition from 2017 is outdated and is not compatible with TensorFlow 2 or any of the most recent updates to Python libraries. A new second edition, updated for 2020 and featuring TensorFlow 2, the Keras API, CNNs, GANs, RNNs, NLP, and AutoML, has now been published.Key Features:Implement various deep learning algorithms in Keras and see how deep learning can be used in gamesSee how various deep learning models and practical use-cases can be implemented using KerasA practical, hands-on guide with real-world examples to give you a strong foundation in KerasBook Description:This book starts by introducing you to supervised learning algorithms such as simple linear regression, the classical multilayer perceptron and more sophisticated deep convolutional networks. You will also explore image processing with recognition of handwritten digit images, classification of images into different categories, and advanced objects recognition with related image annotations. An example of identification of salient points for face detection is also provided.Next you will be introduced to Recurrent Networks, which are optimized for processing sequence data such as text, audio or time series. Following that, you will learn about unsupervised learning algorithms such as Autoencoders and the very popular Generative Adversarial Networks (GANs). You will also explore non-traditional uses of neural networks as Style Transfer.Finally, you will look at reinforcement learning and its application to AI game playing, another popular direction of research and application of neural networks.What You Will Learn:Optimize step-by-step functions on a large neural network using the Backpropagation algorithmFine-tune a neural network to improve the quality of resultsUse deep learning for image and audio processingUse Recursive Neural Tensor Networks (RNTNs) to outperform standard word embedding in special casesIdentify problems for which Recurrent Neural Network (RNN) solutions are suitableExplore the process required to implement AutoencodersEvolve a deep neural network using reinforcement learningWho this book is for:If you are a data scientist with experience in machine learning or an AI programmer with some exposure to neural networks, you will find this book a useful entry point to deep-learning with Keras. A knowledge of Python is required for this book. Nº de ref. del artículo: 9781787128422
Cantidad disponible: 1 disponibles