It is a well-known fact that iterative methods have been studied concerning problems where mathematicians cannot find a solution in a closed form. There exist methods with different behaviors when they are applied to different functions and methods with higher order of convergence, methods with great zones of convergence, methods which do not require the evaluation of any derivative, and optimal methods among others. It should come as no surprise, therefore, that researchers are developing new iterative methods frequently. Once these iterative methods appear, several researchers study them in different terms: convergence conditions, real dynamics, complex dynamics, optimal order of convergence, etc. These phenomena motivated the authors to study the most used and classical ones, for example Newton's method, Halleys method and/or its derivative-free alternatives. Related to the convergence of iterative methods, the most well-known conditions are the ones created by Kantorovich, who developed a theory which has allowed many researchers to continue and experiment with these conditions. Many authors in recent years have studied modifications of these conditions related, for example, to centered conditions, omega-conditions and even convergence in Hilbert spaces. In this monograph, the authors present their complete work done in the past decade in analysing convergence and dynamics of iterative methods. It is the natural outgrowth of their related publications in these areas. Chapters are self-contained and can be read independently. Moreover, an extensive list of references is given in each chapter in order to allow the reader to use the previous ideas. For these reasons, the authors think that several advanced courses can be taught using this book. The book's results are expected to help find applications in many areas of applied mathematics, engineering, computer science and real problems. As such, this monograph is suitable to researchers, graduate students and seminar instructors in the above subjects. The authors believe it would also make an excellent addition to all science and engineering libraries.
"Sinopsis" puede pertenecer a otra edición de este libro.
Professor, Department of Mathematical Sciences, Cameron University, Lawton, Oklahoma, USA.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
HRD. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: GZ-9781634854061
Cantidad disponible: 3 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 27285287
Cantidad disponible: 3 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 27285287-n
Cantidad disponible: 3 disponibles
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
Hardcover. Condición: new. Hardcover. It is a well-known fact that iterative methods have been studied concerning problems where mathematicians cannot find a solution in a closed form. There exist methods with different behaviors when they are applied to different functions and methods with higher order of convergence, methods with great zones of convergence, methods which do not require the evaluation of any derivative, and optimal methods among others. It should come as no surprise, therefore, that researchers are developing new iterative methods frequently. Once these iterative methods appear, several researchers study them in different terms: convergence conditions, real dynamics, complex dynamics, optimal order of convergence, etc. These phenomena motivated the authors to study the most used and classical ones, for example Newton's method, Halleys method and/or its derivative-free alternatives. Related to the convergence of iterative methods, the most well-known conditions are the ones created by Kantorovich, who developed a theory which has allowed many researchers to continue and experiment with these conditions.Many authors in recent years have studied modifications of these conditions related, for example, to centered conditions, omega-conditions and even convergence in Hilbert spaces. In this monograph, the authors present their complete work done in the past decade in analysing convergence and dynamics of iterative methods. It is the natural outgrowth of their related publications in these areas. Chapters are self-contained and can be read independently. Moreover, an extensive list of references is given in each chapter in order to allow the reader to use the previous ideas. For these reasons, the authors think that several advanced courses can be taught using this book. The book's results are expected to help find applications in many areas of applied mathematics, engineering, computer science and real problems. As such, this monograph is suitable to researchers, graduate students and seminar instructors in the above subjects. The authors believe it would also make an excellent addition to all science and engineering libraries. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9781634854061
Cantidad disponible: 1 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 27285287-n
Cantidad disponible: 3 disponibles
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Condición: New. Num Pages: 490 pages. BIC Classification: PBW. Category: (P) Professional & Vocational. Dimension: 260 x 180. . . 2016. UK ed. Hardcover. . . . . Nº de ref. del artículo: V9781634854061
Cantidad disponible: 2 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 27285287
Cantidad disponible: 3 disponibles
Librería: moluna, Greven, Alemania
Condición: New. KlappentextrnrnIt is a well-known fact that iterative methods have been studied concerning problems where mathematicians cannot find a solution in a closed form. There exist methods with different behaviors when they are applied to different fun. Nº de ref. del artículo: 2165664724
Cantidad disponible: 3 disponibles
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
Hardback. Condición: New. Nº de ref. del artículo: LU-9781634854061
Cantidad disponible: 2 disponibles
Librería: AussieBookSeller, Truganina, VIC, Australia
Hardcover. Condición: new. Hardcover. It is a well-known fact that iterative methods have been studied concerning problems where mathematicians cannot find a solution in a closed form. There exist methods with different behaviors when they are applied to different functions and methods with higher order of convergence, methods with great zones of convergence, methods which do not require the evaluation of any derivative, and optimal methods among others. It should come as no surprise, therefore, that researchers are developing new iterative methods frequently. Once these iterative methods appear, several researchers study them in different terms: convergence conditions, real dynamics, complex dynamics, optimal order of convergence, etc. These phenomena motivated the authors to study the most used and classical ones, for example Newton's method, Halleys method and/or its derivative-free alternatives. Related to the convergence of iterative methods, the most well-known conditions are the ones created by Kantorovich, who developed a theory which has allowed many researchers to continue and experiment with these conditions.Many authors in recent years have studied modifications of these conditions related, for example, to centered conditions, omega-conditions and even convergence in Hilbert spaces. In this monograph, the authors present their complete work done in the past decade in analysing convergence and dynamics of iterative methods. It is the natural outgrowth of their related publications in these areas. Chapters are self-contained and can be read independently. Moreover, an extensive list of references is given in each chapter in order to allow the reader to use the previous ideas. For these reasons, the authors think that several advanced courses can be taught using this book. The book's results are expected to help find applications in many areas of applied mathematics, engineering, computer science and real problems. As such, this monograph is suitable to researchers, graduate students and seminar instructors in the above subjects. The authors believe it would also make an excellent addition to all science and engineering libraries. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. Nº de ref. del artículo: 9781634854061
Cantidad disponible: 1 disponibles