Design systems optimized for deep learning models. Written for software engineers, this book teaches you how to implement a maintainable platform for developing deep learning models.
In Engineering Deep Learning Systems you will learn how to:
"Sinopsis" puede pertenecer a otra edición de este libro.
Chi Wang is a principal software developer in the Salesforce Einstein group where he builds the deep learning platform for millions of Salesforce customers. Previously, he worked at Microsoft Bing and Azure on building large-scale distributed systems. Chi has filed six patents, mostly in deep learning systems.
Donald Szeto was the co-founder and CTO of PredictionIO, a startup that aimed to help democratize and accelerate the adoption of machine learning. PredictionIO was acquired by Salesforce, where he continued his work on machine learning and deep learning systems. Donald is currently investing in, advising, and mentoring technology startups.
Engineering Deep Learning Systems teaches you to design and implement an automated platform to support creating, training, and maintaining deep learning models. In it, you'll learn just enough about deep learning to understand the needs of the data scientists who will be using your system. You'll learn to gather requirements, translate them into system component design choices, and integrate those components into a cohesive whole. A complete example system and insightful exercises help you build an intuitive understanding of DL system design.
"Sobre este título" puede pertenecer a otra edición de este libro.
GRATIS gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoEUR 2,25 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: BooksRun, Philadelphia, PA, Estados Unidos de America
Paperback. Condición: Good. It's a preowned item in good condition and includes all the pages. It may have some general signs of wear and tear, such as markings, highlighting, slight damage to the cover, minimal wear to the binding, etc., but they will not affect the overall reading experience. Nº de ref. del artículo: 1633439860-11-1
Cantidad disponible: 1 disponibles
Librería: HPB-Red, Dallas, TX, Estados Unidos de America
paperback. Condición: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Nº de ref. del artículo: S_428472173
Cantidad disponible: 1 disponibles
Librería: Goodwill Books, Hillsboro, OR, Estados Unidos de America
Condición: acceptable. Fairly worn, but readable and intact. If applicable: Dust jacket, disc or access code may not be included. Nº de ref. del artículo: 3IIT4Q004IXL_ns
Cantidad disponible: 1 disponibles
Librería: ThriftBooks-Dallas, Dallas, TX, Estados Unidos de America
Paperback. Condición: Good. No Jacket. Pages can have notes/highlighting. Spine may show signs of wear. ~ ThriftBooks: Read More, Spend Less 1.1. Nº de ref. del artículo: G1633439860I3N00
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 44845777-n
Cantidad disponible: Más de 20 disponibles
Librería: INDOO, Avenel, NJ, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 9781633439863
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 44845777
Cantidad disponible: Más de 20 disponibles
Librería: INDOO, Avenel, NJ, Estados Unidos de America
Condición: As New. Unread copy in mint condition. Nº de ref. del artículo: SS9781633439863
Cantidad disponible: Más de 20 disponibles
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
Paperback. Condición: New. Design systems optimized for deep learning models. Written for software engineers, this book teaches you how to implement a maintainable platform for developing deep learning models. In Engineering Deep Learning Systems you will learn how to: Transfer your software development skills to deep learning systemsRecognize and solve common engineering challenges for deep learning systemsUnderstand the deep learning development cycleAutomate training for models in TensorFlow and PyTorchOptimize dataset management, training, model serving and hyperparameter tuningPick the right open-source project for your platformEngineering Deep Learning Systems is a practical guide for software engineers and data scientists who are designing and building platforms for deep learning. It's full of hands-on examples that will help you transfer your software development skills to implementing deep learning platforms. You'll learn how to build automated and scalable services for core tasks like dataset management, model training/serving, and hyperparameter tuning. This book is the perfect way to step into an exciting-and lucrative-career as a deep learning engineer. about the technology Behind every deep learning researcher is a team of engineers bringing their models to production. To build these systems, you need to understand how a deep learning system's platform differs from other distributed systems. By mastering the core ideas in this book, you'll be able to support deep learning systems in a way that's fast, repeatable, and reliable. Nº de ref. del artículo: LU-9781633439863
Cantidad disponible: 2 disponibles
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: PB-9781633439863
Cantidad disponible: 15 disponibles