Upgrade your RAG applications with the power of knowledge graphs.
Retrieval Augmented Generation (RAG) is a great way to harness the power of generative AI for information not contained in a LLM's training data and to avoid depending on LLM for factual information. However, RAG only works when you can quickly identify and supply the most relevant context to your LLM. Essential GraphRAG shows you how to use knowledge graphs to model your RAG data and deliver better performance, accuracy, traceability, and completeness.
Inside Essential GraphRAG you'll learn:
Essential GraphRAG is a practical guide to empowering LLMs with RAG. You'll learn to deliver vector similarity-based approaches to find relevant information, as well as work with semantic layers, and generate Cypher statements to retrieve data from a knowledge graph.
"Sinopsis" puede pertenecer a otra edición de este libro.
Tomaz Bratanic has extensive experience with graphs, machine learning, and generative AI. He has written an in-depth book about using graph algorithms in practical examples. Nowadays, he focuses on generative AI and LLMs by contributing to popular frameworks like LangChain and LlamaIndex and writing blog posts about LLM-based applications.
Oskar Hane is a Senior Staff Software Engineer at Neo4j. He has over 20 years of experience as a Software Engineer and 10 years of experience working with Neo4j and knowledge graphs. He is currently leading the Generative AI engineering team within Neo4j, with the focus to provide the best possible experience for other developers to build GenAI applications with Neo4j.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 2,27 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoEUR 2,27 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 50570039-n
Cantidad disponible: Más de 20 disponibles
Librería: INDOO, Avenel, NJ, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 9781633436268
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 50570039
Cantidad disponible: Más de 20 disponibles
Librería: INDOO, Avenel, NJ, Estados Unidos de America
Condición: As New. Unread copy in mint condition. Nº de ref. del artículo: SS9781633436268
Cantidad disponible: Más de 20 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9781633436268
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: GB-9781633436268
Cantidad disponible: 15 disponibles
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Condición: New. Nº de ref. del artículo: V9781633436268
Cantidad disponible: Más de 20 disponibles
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: V9781633436268
Cantidad disponible: Más de 20 disponibles
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
Paperback. Condición: new. Paperback. Upgrade your RAG applications with the power of knowledge graphs.Retrieval Augmented Generation (RAG) is a great way to harness the power of generative AI for information not contained in a LLM's training data and to avoid depending on LLM for factual information. However, RAG only works when you can quickly identify and supply the most relevant context to your LLM. Essential GraphRAG shows you how to use knowledge graphs to model your RAG data and deliver better performance, accuracy, traceability, and completeness.Inside Essential GraphRAG you'll learn: The benefits of using Knowledge Graphs in a RAG systemHow to implement a GraphRAG system from scratchThe process of building a fully working production RAG systemConstructing knowledge graphs using LLMsEvaluating performance of a RAG pipeline Essential GraphRAG is a practical guide to empowering LLMs with RAG. You'll learn to deliver vector similarity-based approaches to find relevant information, as well as work with semantic layers, and generate Cypher statements to retrieve data from a knowledge graph. Upgrade your RAG applications with the power of knowledge graphs. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9781633436268
Cantidad disponible: 1 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 50570039-n
Cantidad disponible: Más de 20 disponibles