Artículos relacionados a Dynamic Information Retrieval Modeling (Synthesis Lectures...

Dynamic Information Retrieval Modeling (Synthesis Lectures on Information Concepts, Retrieval, and Services) - Tapa blanda

 
9781627055253: Dynamic Information Retrieval Modeling (Synthesis Lectures on Information Concepts, Retrieval, and Services)

Sinopsis

Big data and human-computer information retrieval (HCIR) are changing IR. They capture the dynamic changes in the data and dynamic interactions of users with IR systems. A dynamic system is one which changes or adapts over time or a sequence of events. Many modern IR systems and data exhibit these characteristics which are largely ignored by conventional techniques. What is missing is an ability for the model to change over time and be responsive to stimulus. Documents, relevance, users and tasks all exhibit dynamic behavior that is captured in data sets typically collected over long time spans and models need to respond to these changes. Additionally, the size of modern datasets enforces limits on the amount of learning a system can achieve. Further to this, advances in IR interface, personalization and ad display demand models that can react to users in real time and in an intelligent, contextual way.

In this book we provide a comprehensive and up-to-date introduction to Dynamic Information Retrieval Modeling, the statistical modeling of IR systems that can adapt to change. We define dynamics, what it means within the context of IR and highlight examples of problems where dynamics play an important role. We cover techniques ranging from classic relevance feedback to the latest applications of partially observable Markov decision processes (POMDPs) and a handful of useful algorithms and tools for solving IR problems incorporating dynamics.

The theoretical component is based around the Markov Decision Process (MDP), a mathematical framework taken from the field of Artificial Intelligence (AI) that enables us to construct models that change according to sequential inputs. We define the framework and the algorithms commonly used to optimize over it and generalize it to the case where the inputs aren't reliable. We explore the topic of reinforcement learning more broadly and introduce another tool known as a Multi-Armed Bandit which is useful for cases where exploring model parameters is beneficial. Following this we introduce theories and algorithms which can be used to incorporate dynamics into an IR model before presenting an array of state-of-the-art research that already does, such as in the areas of session search and online advertising.

Change is at the heart of modern Information Retrieval systems and this book will help equip the reader with the tools and knowledge needed to understand Dynamic Information Retrieval Modeling.

"Sinopsis" puede pertenecer a otra edición de este libro.

Reseña del editor

Big data and human-computer information retrieval (HCIR) are changing IR. They capture the dynamic changes in the data and dynamic interactions of users with IR systems. A dynamic system is one which changes or adapts over time or a sequence of events. Many modern IR systems and data exhibit these characteristics which are largely ignored by conventional techniques. What is missing is an ability for the model to change over time and be responsive to stimulus. Documents, relevance, users and tasks all exhibit dynamic behavior that is captured in data sets typically collected over long time spans and models need to respond to these changes. Additionally, the size of modern datasets enforces limits on the amount of learning a system can achieve. Further to this, advances in IR interface, personalization and ad display demand models that can react to users in real time and in an intelligent, contextual way.

In this book we provide a comprehensive and up-to-date introduction to Dynamic Information Retrieval Modeling, the statistical modeling of IR systems that can adapt to change. We define dynamics, what it means within the context of IR and highlight examples of problems where dynamics play an important role. We cover techniques ranging from classic relevance feedback to the latest applications of partially observable Markov decision processes (POMDPs) and a handful of useful algorithms and tools for solving IR problems incorporating dynamics.

The theoretical component is based around the Markov Decision Process (MDP), a mathematical framework taken from the field of Artificial Intelligence (AI) that enables us to construct models that change according to sequential inputs. We define the framework and the algorithms commonly used to optimize over it and generalize it to the case where the inputs aren't reliable. We explore the topic of reinforcement learning more broadly and introduce another tool known as a Multi-Armed Bandit which is useful for cases where exploring model parameters is beneficial. Following this we introduce theories and algorithms which can be used to incorporate dynamics into an IR model before presenting an array of state-of-the-art research that already does, such as in the areas of session search and online advertising.

Change is at the heart of modern Information Retrieval systems and this book will help equip the reader with the tools and knowledge needed to understand Dynamic Information Retrieval Modeling.

Biografía del autor

Grace Hui Yang is an Assistant Professor in the Department of Computer Science at Georgetown University. Grace's research interests include information retrieval, machine learning, natural language processing and text mining, with the current focus on dynamic search, search engine evaluation, and privacy-preserving information retrieval. Prior to this, she conducted research on question answering, ontology construction, near-duplicate detection, multimedia information retrieval, and opinion and sentiment detection. e results of her research have been published in SIGIR, CIKM, ACL, TREC, ECIR, ICTIR, and WWW since 2002. She was a recipient of the National Science Foundation Faculty Early Career Development (CAREER) Award. Grace co-organized the TREC Dynamic Domain Track and served as area chairs in SIGIR and ACL. She also served in the Information Retrieval Journal Editorial Board. Marc Sloan has completed a Ph.D. in Information Retrieval at University College London; his thesis was titled Probabilistic Modeling in Dynamic Information Retrieval. His research interests include applying reinforcement learning techniques such as multi-armed bandits and POMDPs to IR learning systems over time, contextual session search and query suggestion. Marc has published and presented IR research in top-tier conferences and journals such as WWW, SIGIR, WSDM, ICTIR and the Information Retrieval Journal. He has interned at Microsoft Research working on contextual, session based search result blending. Jun Wang is a Reader in Computer Science, University College London, and the Founding Director of MSc Web Science and Big Data Analytics. His main research interests are in the areas of information retrieval, data mining and online advertising. He was a recipient of the Beyond Search award sponsored by Microsoft Research, US, in 2007; he also received the Best Doctoral Consortium award in ACM SIGIR06 for his work on collaborative filtering, the Best Paper Prizes in ECIR09 and ECIR12 for information retrieval, and the Best Paper Prize in ADKDD14 for computational advertising. He is also one of the recipients of Yahoo! FREP award 2014. He is an Area Chair of ACM SIGIR05 and has been a Senior PC member of ACM CIKM since 2012.

"Sobre este título" puede pertenecer a otra edición de este libro.

  • EditorialMorgan & Claypool Publishers
  • Año de publicación2016
  • ISBN 10 1627055258
  • ISBN 13 9781627055253
  • EncuadernaciónTapa blanda
  • IdiomaInglés
  • Número de páginas146
  • Contacto del fabricanteno disponible

Comprar usado

Condición: Bien
l'article peut presenter de tres...
Ver este artículo

EUR 12,00 gastos de envío desde Francia a España

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9783031011733: Dynamic Information Retrieval Modeling (Synthesis Lectures on Information Concepts, Retrieval, and Services)

Edición Destacada

ISBN 10:  3031011732 ISBN 13:  9783031011733
Editorial: Springer, 2016
Tapa blanda

Resultados de la búsqueda para Dynamic Information Retrieval Modeling (Synthesis Lectures...

Imagen de archivo

Yang, Grace Hui; Sloan, Marc; Wang, Jun
Publicado por Morgan & Claypool, 2016
ISBN 10: 1627055258 ISBN 13: 9781627055253
Antiguo o usado Tapa blanda

Librería: LiLi - La Liberté des Livres, CANEJAN, Francia

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: very good. l'article peut presenter de tres legers signes d'usure. vendeur professionnel; envoi soigne en 24/48h. Nº de ref. del artículo: 2502140002404

Contactar al vendedor

Comprar usado

EUR 45,46
Convertir moneda
Gastos de envío: EUR 12,00
De Francia a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Yang, Grace Hui; Sloan, Marc; Wang, Jun
Publicado por Morgan & Claypool Publishers, 2016
ISBN 10: 1627055258 ISBN 13: 9781627055253
Antiguo o usado Paperback Ejemplar firmado

Librería: Sequitur Books, Boonsboro, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: As New. [Inscribed by author: Grace Hui Yang] Softcover. Good binding and cover. Clean, unmarked pages. Signed by author. Signed. Nº de ref. del artículo: 1709250179

Contactar al vendedor

Comprar usado

EUR 36,13
Convertir moneda
Gastos de envío: EUR 28,95
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Yang, Grace Hui,Sloan, Marc,Wang, Jun
Publicado por Morgan & Claypool Publishers, 2016
ISBN 10: 1627055258 ISBN 13: 9781627055253
Antiguo o usado paperback

Librería: HPB-Red, Dallas, TX, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

paperback. Condición: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Nº de ref. del artículo: S_370846465

Contactar al vendedor

Comprar usado

EUR 37,02
Convertir moneda
Gastos de envío: EUR 94,73
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito