Artículos relacionados a Outlier Detection for Temporal Data (Synthesis Lectures...

Outlier Detection for Temporal Data (Synthesis Lectures on Data Mining and Knowledge Discovery) - Tapa blanda

 
9781627053754: Outlier Detection for Temporal Data (Synthesis Lectures on Data Mining and Knowledge Discovery)

Sinopsis

Outlier (or anomaly) detection is a very broad field which has been studied in the context of a large number of research areas like statistics, data mining, sensor networks, environmental science, distributed systems, spatio-temporal mining, etc. Initial research in outlier detection focused on time series-based outliers (in statistics). Since then, outlier detection has been studied on a large variety of data types including high-dimensional data, uncertain data, stream data, network data, time series data, spatial data, and spatio-temporal data. While there have been many tutorials and surveys for general outlier detection, we focus on outlier detection for temporal data in this book. A large number of applications generate temporal datasets. For example, in our everyday life, various kinds of records like credit, personnel, financial, judicial, medical, etc., are all temporal. This stresses the need for an organized and detailed study of outliers with respect to such temporal data. In the past decade, there has been a lot of research on various forms of temporal data including consecutive data snapshots, series of data snapshots and data streams. Besides the initial work on time series, researchers have focused on rich forms of data including multiple data streams, spatio-temporal data, network data, community distribution data, etc.

Compared to general outlier detection, techniques for temporal outlier detection are very different. In this book, we will present an organized picture of both recent and past research in temporal outlier detection. We start with the basics and then ramp up the reader to the main ideas in state-of-the-art outlier detection techniques. We motivate the importance of temporal outlier detection and brief the challenges beyond usual outlier detection. Then, we list down a taxonomy of proposed techniques for temporal outlier detection. Such techniques broadly include statistical techniques (like AR models, Markov models, histograms, neural networks), distance- and density-based approaches, grouping-based approaches (clustering, community detection), network-based approaches, and spatio-temporal outlier detection approaches. We summarize by presenting a wide collection of applications where temporal outlier detection techniques have been applied to discover interesting outliers.

Table of Contents: Preface / Acknowledgments / Figure Credits / Introduction and Challenges / Outlier Detection for Time Series and Data Sequences / Outlier Detection for Data Streams / Outlier Detection for Distributed Data Streams / Outlier Detection for Spatio-Temporal Data / Outlier Detection for Temporal Network Data / Applications of Outlier Detection for Temporal Data / Conclusions and Research Directions / Bibliography / Authors' Biographies

"Sinopsis" puede pertenecer a otra edición de este libro.

Reseña del editor

Outlier (or anomaly) detection is a very broad field which has been studied in the context of a large number of research areas like statistics, data mining, sensor networks, environmental science, distributed systems, spatio-temporal mining, etc. Initial research in outlier detection focused on time series-based outliers (in statistics). Since then, outlier detection has been studied on a large variety of data types including high-dimensional data, uncertain data, stream data, network data, time series data, spatial data, and spatio-temporal data. While there have been many tutorials and surveys for general outlier detection, we focus on outlier detection for temporal data in this book. A large number of applications generate temporal datasets. For example, in our everyday life, various kinds of records like credit, personnel, financial, judicial, medical, etc., are all temporal. This stresses the need for an organized and detailed study of outliers with respect to such temporal data. In the past decade, there has been a lot of research on various forms of temporal data including consecutive data snapshots, series of data snapshots and data streams. Besides the initial work on time series, researchers have focused on rich forms of data including multiple data streams, spatio-temporal data, network data, community distribution data, etc. Compared to general outlier detection, techniques for temporal outlier detection are very different. In this book, we will present an organized picture of both recent and past research in temporal outlier detection. We start with the basics and then ramp up the reader to the main ideas in state-of-the-art outlier detection techniques. We motivate the importance of temporal outlier detection and brief the challenges beyond usual outlier detection. Then, we list down a taxonomy of proposed techniques for temporal outlier detection. Such techniques broadly include statistical techniques (like AR models, Markov models, histograms, neural networks), distance- and density-based approaches, grouping-based approaches (clustering, community detection), network-based approaches, and spatio-temporal outlier detection approaches. We summarize by presenting a wide collection of applications where temporal outlier detection techniques have been applied to discover interesting outliers.

Biografía del autor

Microsoft India and International Institute of Information Technology, Hyderabad, India

"Sobre este título" puede pertenecer a otra edición de este libro.

  • EditorialMorgan & Claypool Publishers
  • Año de publicación2014
  • ISBN 10 1627053751
  • ISBN 13 9781627053754
  • EncuadernaciónTapa blanda
  • IdiomaInglés
  • Número de páginas130
  • Contacto del fabricanteno disponible

Comprar usado

Condición: Bien
Fast Shipping - Safe and Secure...
Ver este artículo

EUR 65,07 gastos de envío desde Estados Unidos de America a España

Destinos, gastos y plazos de envío

Comprar nuevo

Ver este artículo

EUR 9,98 gastos de envío desde Estados Unidos de America a España

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9783031007774: Outlier Detection for Temporal Data (Synthesis Lectures on Data Mining and Knowledge Discovery)

Edición Destacada

ISBN 10:  3031007778 ISBN 13:  9783031007774
Editorial: Springer, 2014
Tapa blanda

Resultados de la búsqueda para Outlier Detection for Temporal Data (Synthesis Lectures...

Imagen de archivo

Jing Gao Charu Aggarwal Manish Gupta
Publicado por Morgan & Claypool Publishers, 2014
ISBN 10: 1627053751 ISBN 13: 9781627053754
Nuevo Tapa blanda

Librería: Books Puddle, New York, NY, Estados Unidos de America

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. pp. 130. Nº de ref. del artículo: 26359067243

Contactar al vendedor

Comprar nuevo

EUR 62,85
Convertir moneda
Gastos de envío: EUR 9,98
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Gao Jing Aggarwal Charu Gupta Manish
Publicado por Morgan & Claypool Publishers, 2014
ISBN 10: 1627053751 ISBN 13: 9781627053754
Nuevo Tapa blanda

Librería: Majestic Books, Hounslow, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. pp. 130 3:B&W 7.5 x 9.25 in or 235 x 191 mm Perfect Bound on White w/Gloss Lam. Nº de ref. del artículo: 353456564

Contactar al vendedor

Comprar nuevo

EUR 62,85
Convertir moneda
Gastos de envío: EUR 10,33
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Gupta, Manish|Gao, Jing|Aggarwal, Charu
Publicado por MORGAN & CLAYPOOL, 2014
ISBN 10: 1627053751 ISBN 13: 9781627053754
Nuevo Tapa blanda
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. KlappentextrnrnOutlier (or anomaly) detection is a very broad field which has been studied in the context of a large number of research areas like statistics, data mining, sensor networks, environmental science, distributed systems, spatio-tempo. Nº de ref. del artículo: 464165663

Contactar al vendedor

Comprar nuevo

EUR 69,18
Convertir moneda
Gastos de envío: EUR 19,49
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Gupta, Manish,Gao, Jing,Aggarwal, Charu,Han, Jiawei
Publicado por Morgan & Claypool Publishers, 2014
ISBN 10: 1627053751 ISBN 13: 9781627053754
Antiguo o usado paperback

Librería: suffolkbooks, Center moriches, NY, Estados Unidos de America

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

paperback. Condición: Very Good. Fast Shipping - Safe and Secure 7 days a week! Nº de ref. del artículo: 3TWOWA001NC7

Contactar al vendedor

Comprar usado

EUR 29,05
Convertir moneda
Gastos de envío: EUR 65,07
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Gupta, Manish, Gao, Jing, Aggarwal, Charu, Han, Jiawei
Publicado por Morgan & Claypool Publishers, 2014
ISBN 10: 1627053751 ISBN 13: 9781627053754
Antiguo o usado Paperback

Librería: dsmbooks, Liverpool, Reino Unido

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: Like New. Like New. book. Nº de ref. del artículo: D7F6-5-M-1627053751-5

Contactar al vendedor

Comprar usado

EUR 87,79
Convertir moneda
Gastos de envío: EUR 31,52
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito