Machine Learning Engineering in Action lays out an approach to building deployable, maintainable production machine learning systems. You will adopt software development standards that deliver better code management, and make it easier to test, scale, and even reuse your machine learning code!
You will learn how to plan and scope your project, manage cross-team logistics that avoid fatal communication failures, and design your code's architecture for improved resilience. You will even discover when not to use machine learning―and the alternative approaches that might be cheaper and more effective. When you're done working through this toolbox guide, you will be able to reliably deliver cost-effective solutions for organizations big and small alike.
Following established processes and methodology maximizes the likelihood that your machine learning projects will survive and succeed for the long haul. By adopting standard, reproducible practices, your projects will be maintainable over time and easy for new team members to understand and adapt.
"Sinopsis" puede pertenecer a otra edición de este libro.
Ben Wilson has worked as a professional data scientist for more than ten years. He currently works as a resident solutions architect at Databricks,where he focuses on machine learning production architecture with companies ranging from 5-person startups to global Fortune 100. Ben is the creator and lead developer of the Databricks Labs AutoML project, a Scala-and Python-based toolkit that simplifies machine learning feature engineering, model tuning, and pipeline-enabled modelling.
Machine Learning Engineering in Action is a roadmap to delivering successful machine learning projects. It teaches you to adopt an efficient, sustainable, and goal-driven approach that author Ben Wilson has developed over a decade of data science experience. Every method in this book has been used to solve a breakdown in a real-world project, and is illustrated with production-ready source code and easily reproducible examples.
You'll learn how to plan and scope your project, manage cross-team logistics that avoid fatal communication failures, and design your code's architecture for improved resilience. You'll even discover when not to use machine learning--and the alternative approaches that might be cheaper and more effective. When you're done working through this toolbox guide, you will be able to reliably deliver cost-effective solutions for organizations big and small alike.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 2,28 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoEUR 2,28 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 43786890-n
Cantidad disponible: Más de 20 disponibles
Librería: Follow Books, SOUTHFIELD, MI, Estados Unidos de America
Condición: New. New Book. Nº de ref. del artículo: 1617298719-TUX
Cantidad disponible: 3 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 43786890
Cantidad disponible: Más de 20 disponibles
Librería: INDOO, Avenel, NJ, Estados Unidos de America
Condición: As New. Unread copy in mint condition. Nº de ref. del artículo: SS9781617298714
Cantidad disponible: Más de 20 disponibles
Librería: INDOO, Avenel, NJ, Estados Unidos de America
Condición: New. Brand New. Nº de ref. del artículo: 9781617298714
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: PB-9781617298714
Cantidad disponible: 15 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: PB-9781617298714
Cantidad disponible: 15 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 43786890-n
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 43786890
Cantidad disponible: Más de 20 disponibles
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
Paperback. Condición: new. Paperback. Machine Learning Engineering in Action lays out an approach to building deployable, maintainable production machine learning systems. You will adopt software development standards that deliver better code management, and make it easier to test, scale, and even reuse your machine learning code! You will learn how to plan and scope your project, manage cross-team logistics that avoid fatal communication failures, and design your code's architecture for improved resilience. You will even discover when not to use machine learningand the alternative approaches that might be cheaper and more effective. When you're done working through this toolbox guide, you will be able to reliably deliver cost-effective solutions for organizations big and small alike. Following established processes and methodology maximizes the likelihood that your machine learning projects will survive and succeed for the long haul. By adopting standard, reproducible practices, your projects will be maintainable over time and easy for new team members to understand and adapt. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9781617298714
Cantidad disponible: 1 disponibles