Artículos relacionados a MLOps Engineering at Scale: Deploying Pytorch Models...

MLOps Engineering at Scale: Deploying Pytorch Models on Aws - Tapa blanda

 
9781617297762: MLOps Engineering at Scale: Deploying Pytorch Models on Aws

Sinopsis

Deploying a machine learning model into a fully realized production system usually requires painstaking work by an operations team creating and managing custom servers.   Cloud Native Machine Learning  helps you bridge that gap by using the pre-built services provided by cloud platforms like Azure and AWS to assemble your ML system’s infrastructure. Following a real-world use case for calculating taxi fares, you’ll learn how to get a serverless ML pipeline up and running using AWS services. Clear and detailed tutorials show you how to develop reliable, flexible, and scalable machine learning systems without time-consuming management tasks or the costly overheads of physical hardware. about the technologyYour new machine learning model is ready to put into production, and suddenly all your time is taken up by setting up your server infrastructure. Serverless machine learning offers a productivity-boosting alternative. It eliminates the time-consuming operations tasks from your machine learning lifecycle, letting out-of-the-box cloud services take over launching, running, and managing your ML systems. With the serverless capabilities of major cloud vendors handling your infrastructure, you’re free to focus on tuning and improving your models. about the book Cloud Native Machine Learning  is a guide to bringing your experimental machine learning code to production using serverless capabilities from major cloud providers. You’ll start with best practices for your datasets, learning to bring VACUUM data-quality principles to your projects, and ensure that your datasets can be reproducibly sampled. Next, you’ll learn to implement machine learning models with PyTorch, discovering how to scale up your models in the cloud and how to use PyTorch Lightning for distributed ML training. Finally, you’ll tune and engineer your serverless machine learning pipeline for scalability, elasticity, and ease of monitoring with the built-in notification tools of your cloud platform. When you’re done, you’ll have the tools to easily bridge the gap between ML models and a fully functioning production system.   what's inside

  • Extracting, transforming, and loading datasets
  • Querying datasets with SQL
  • Understanding automatic differentiation in PyTorch
  • Deploying trained models and pipelines as a service endpoint
  • Monitoring and managing your pipeline’s life cycle
  • Measuring performance improvements
about the readerFor data professionals with intermediate Python skills and basic familiarity with machine learning. No cloud experience required. about the author Carl Osipov  has spent over 15 years working on big data processing and machine learning in multi-core, distributed systems, such as service-oriented architecture and cloud computing platforms. While at IBM, Carl helped IBM Software Group to shape its strategy around the use of Docker and other container-based technologies for serverless computing using IBM Cloud and Amazon Web Services. At Google, Carl learned from the world’s foremost experts in machine learning and also helped manage the company’s efforts to democratize artificial intelligence. You can learn more about Carl from his blog   Clouds With Carl.

"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca del autor

Carl Osipov has been working in the information technology industry since 2001, with a focus on projects in big data analytics and machine learning in multi-core, distributed systems, such as service-oriented architecture and cloud computing platforms. While at IBM, Carl helped IBM Software Group to shape its strategy around the use of Docker and other container-based technologies for serverless cloud computing using IBM Cloud and Amazon Web Services. At Google, Carl learned from the world’s foremost experts in machine learning and helped manage the company’s efforts to democratize artificial intelligence with Google Cloud and TensorFlow. Carl is an author of over 20 articles in professional, trade, and academic journals; an inventor with six patents at USPTO; and the holder of three corporate technology awards from IBM.

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar usado

Condición: Como Nuevo
Unread book in perfect condition...
Ver este artículo

EUR 17,05 gastos de envío desde Estados Unidos de America a España

Destinos, gastos y plazos de envío

Comprar nuevo

Ver este artículo

EUR 3,41 gastos de envío desde Estados Unidos de America a España

Destinos, gastos y plazos de envío

Resultados de la búsqueda para MLOps Engineering at Scale: Deploying Pytorch Models...

Imagen del vendedor

Carl Osipov
Publicado por Manning Publications, US, 2022
ISBN 10: 1617297763 ISBN 13: 9781617297762
Nuevo Paperback

Librería: Rarewaves USA, OSWEGO, IL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: New. Deploying a machine learning model into a fully realized production system usually requires painstaking work by an operations team creating and managing custom servers.   Cloud Native Machine Learning  helps you bridge that gap by using the pre-built services provided by cloud platforms like Azure and AWS to assemble your ML system's infrastructure. Following a real-world use case for calculating taxi fares, you'll learn how to get a serverless ML pipeline up and running using AWS services. Clear and detailed tutorials show you how to develop reliable, flexible, and scalable machine learning systems without time-consuming management tasks or the costly overheads of physical hardware. about the technologyYour new machine learning model is ready to put into production, and suddenly all your time is taken up by setting up your server infrastructure. Serverless machine learning offers a productivity-boosting alternative. It eliminates the time-consuming operations tasks from your machine learning lifecycle, letting out-of-the-box cloud services take over launching, running, and managing your ML systems. With the serverless capabilities of major cloud vendors handling your infrastructure, you're free to focus on tuning and improving your models. about the book Cloud Native Machine Learning  is a guide to bringing your experimental machine learning code to production using serverless capabilities from major cloud providers. You'll start with best practices for your datasets, learning to bring VACUUM data-quality principles to your projects, and ensure that your datasets can be reproducibly sampled. Next, you'll learn to implement machine learning models with PyTorch, discovering how to scale up your models in the cloud and how to use PyTorch Lightning for distributed ML training. Finally, you'll tune and engineer your serverless machine learning pipeline for scalability, elasticity, and ease of monitoring with the built-in notification tools of your cloud platform. When you're done, you'll have the tools to easily bridge the gap between ML models and a fully functioning production system.   what's inside Extracting, transforming, and loading datasetsQuerying datasets with SQLUnderstanding automatic differentiation in PyTorchDeploying trained models and pipelines as a service endpointMonitoring and managing your pipeline's life cycleMeasuring performance improvements about the readerFor data professionals with intermediate Python skills and basic familiarity with machine learning. No cloud experience required. about the author Carl Osipov  has spent over 15 years working on big data processing and machine learning in multi-core, distributed systems, such as service-oriented architecture and cloud computing platforms. While at IBM, Carl helped IBM Software Group to shape its strategy around the use of Docker and other container-based technologies for serverless computing using IBM Cloud and Amazon Web Services. Nº de ref. del artículo: LU-9781617297762

Contactar al vendedor

Comprar nuevo

EUR 50,04
Convertir moneda
Gastos de envío: EUR 3,41
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 10 disponibles

Añadir al carrito

Imagen de archivo

Osipov, Carl
Publicado por Manning, 2022
ISBN 10: 1617297763 ISBN 13: 9781617297762
Nuevo Tapa blanda

Librería: Romtrade Corp., STERLING HEIGHTS, MI, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Nº de ref. del artículo: ABNR-28866

Contactar al vendedor

Comprar nuevo

EUR 55,28
Convertir moneda
Gastos de envío: GRATIS
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 5 disponibles

Añadir al carrito

Imagen del vendedor

Carl Osipov
Publicado por Manning Publications, US, 2022
ISBN 10: 1617297763 ISBN 13: 9781617297762
Nuevo Paperback

Librería: Rarewaves USA United, OSWEGO, IL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: New. Deploying a machine learning model into a fully realized production system usually requires painstaking work by an operations team creating and managing custom servers.   Cloud Native Machine Learning  helps you bridge that gap by using the pre-built services provided by cloud platforms like Azure and AWS to assemble your ML system's infrastructure. Following a real-world use case for calculating taxi fares, you'll learn how to get a serverless ML pipeline up and running using AWS services. Clear and detailed tutorials show you how to develop reliable, flexible, and scalable machine learning systems without time-consuming management tasks or the costly overheads of physical hardware. about the technologyYour new machine learning model is ready to put into production, and suddenly all your time is taken up by setting up your server infrastructure. Serverless machine learning offers a productivity-boosting alternative. It eliminates the time-consuming operations tasks from your machine learning lifecycle, letting out-of-the-box cloud services take over launching, running, and managing your ML systems. With the serverless capabilities of major cloud vendors handling your infrastructure, you're free to focus on tuning and improving your models. about the book Cloud Native Machine Learning  is a guide to bringing your experimental machine learning code to production using serverless capabilities from major cloud providers. You'll start with best practices for your datasets, learning to bring VACUUM data-quality principles to your projects, and ensure that your datasets can be reproducibly sampled. Next, you'll learn to implement machine learning models with PyTorch, discovering how to scale up your models in the cloud and how to use PyTorch Lightning for distributed ML training. Finally, you'll tune and engineer your serverless machine learning pipeline for scalability, elasticity, and ease of monitoring with the built-in notification tools of your cloud platform. When you're done, you'll have the tools to easily bridge the gap between ML models and a fully functioning production system.   what's inside Extracting, transforming, and loading datasetsQuerying datasets with SQLUnderstanding automatic differentiation in PyTorchDeploying trained models and pipelines as a service endpointMonitoring and managing your pipeline's life cycleMeasuring performance improvements about the readerFor data professionals with intermediate Python skills and basic familiarity with machine learning. No cloud experience required. about the author Carl Osipov  has spent over 15 years working on big data processing and machine learning in multi-core, distributed systems, such as service-oriented architecture and cloud computing platforms. While at IBM, Carl helped IBM Software Group to shape its strategy around the use of Docker and other container-based technologies for serverless computing using IBM Cloud and Amazon Web Services. Nº de ref. del artículo: LU-9781617297762

Contactar al vendedor

Comprar nuevo

EUR 51,88
Convertir moneda
Gastos de envío: EUR 3,41
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 10 disponibles

Añadir al carrito

Imagen de archivo

Osipov, Carl
Publicado por Manning, 2022
ISBN 10: 1617297763 ISBN 13: 9781617297762
Nuevo Tapa blanda

Librería: SMASS Sellers, IRVING, TX, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Brand New Original US Edition. Customer service! Satisfaction Guaranteed. Nº de ref. del artículo: ASNT3-28866

Contactar al vendedor

Comprar nuevo

EUR 57,09
Convertir moneda
Gastos de envío: GRATIS
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 5 disponibles

Añadir al carrito

Imagen de archivo

Osipov, Carl
Publicado por Manning, 2022
ISBN 10: 1617297763 ISBN 13: 9781617297762
Nuevo Tapa blanda

Librería: Books Puddle, New York, NY, Estados Unidos de America

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 26389786231

Contactar al vendedor

Comprar nuevo

EUR 53,46
Convertir moneda
Gastos de envío: EUR 9,81
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Osipov, Carl
Publicado por Manning, 2022
ISBN 10: 1617297763 ISBN 13: 9781617297762
Nuevo Tapa blanda

Librería: Majestic Books, Hounslow, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 390862248

Contactar al vendedor

Comprar nuevo

EUR 53,63
Convertir moneda
Gastos de envío: EUR 10,21
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Osipov, Carl
Publicado por Manning, 2022
ISBN 10: 1617297763 ISBN 13: 9781617297762
Nuevo Tapa blanda

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 42620453-n

Contactar al vendedor

Comprar nuevo

EUR 47,71
Convertir moneda
Gastos de envío: EUR 17,05
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 18 disponibles

Añadir al carrito

Imagen de archivo

Carl Osipov
Publicado por Manning Publications, 2022
ISBN 10: 1617297763 ISBN 13: 9781617297762
Nuevo Tapa blanda Original o primera edición

Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. 2022. 1st Edition. Paperback. . . . . . Nº de ref. del artículo: V9781617297762

Contactar al vendedor

Comprar nuevo

EUR 65,76
Convertir moneda
Gastos de envío: EUR 2,00
De Irlanda a España
Destinos, gastos y plazos de envío

Cantidad disponible: 15 disponibles

Añadir al carrito

Imagen de archivo

Osipov, Carl
Publicado por Manning, 2022
ISBN 10: 1617297763 ISBN 13: 9781617297762
Nuevo Tapa blanda

Librería: Biblios, Frankfurt am main, HESSE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 18389786237

Contactar al vendedor

Comprar nuevo

EUR 55,29
Convertir moneda
Gastos de envío: EUR 14,50
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Imagen del vendedor

Osipov, Carl
Publicado por Manning, 2022
ISBN 10: 1617297763 ISBN 13: 9781617297762
Antiguo o usado Tapa blanda

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 42620453

Contactar al vendedor

Comprar usado

EUR 55,59
Convertir moneda
Gastos de envío: EUR 17,05
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 18 disponibles

Añadir al carrito

Existen otras 9 copia(s) de este libro

Ver todos los resultados de su búsqueda