AI models can become so complex that even experts have difficulty understanding them―and forget about explaining the nuances of a cluster of novel algorithms to a business stakeholder! InterpretableAI is filled with cutting-edge techniques that will improve your understanding of how your AI models function.
InterpretableAI is a hands-on guide to interpretability techniques that open up the black box of AI. This practical guide simplifies cutting edge research into transparent and explainable AI, delivering practical methods you can easily implement with Python and opensource libraries. With examples from all major machine learning approaches, this book demonstrates why some approaches to AI are so opaque, teaches you toidentify the patterns your model has learned, and presents best practices for building fair and unbiased models.
How deep learning models produce their results is often a complete mystery, even to their creators. These AI"black boxes" can hide unknown issues―including data leakage, the replication of human bias, and difficulties complying with legal requirements such as the EU's "right to explanation." State-of-the-art interpretability techniques have been developed to understand even the most complex deep learning models, allowing humans to follow an AI's methods and to better detect when it has made a mistake.
"Sinopsis" puede pertenecer a otra edición de este libro.
Ajay Thampi is a machine learning engineer at a large tech company primarily focused on responsible AI and fairness. He holds a PhD and his research was focused on signal processing and machine learning. He has published papers at leading conferences and journals on reinforcement learning, convex optimization, and classical machine learning techniques applied to 5G cellular networks.
Interpretable AI is a hands-on guide to interpretability techniques that open up the black box of AI. This practical guide simplifies cutting-edge research into transparent and explainable AI, delivering practical methods you can easily implement with Python and open source libraries. With examples from all major machine learning approaches, this book demonstrates why some approaches to AI are so opaque, teaches you to identify the patterns your model has learned, and presents best practices for building fair and unbiased models. When you're done, you'll be able to improve your AI's performance during training, and build robust systems that counter act errors from bias, data leakage, and concept drift.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 6,95 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoEUR 1,02 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoLibrería: WorldofBooks, Goring-By-Sea, WS, Reino Unido
Paperback. Condición: Very Good. The book has been read, but is in excellent condition. Pages are intact and not marred by notes or highlighting. The spine remains undamaged. Nº de ref. del artículo: GOR013706931
Cantidad disponible: 1 disponibles
Librería: SecondSale, Montgomery, IL, Estados Unidos de America
Condición: Good. Item in good condition. Textbooks may not include supplemental items i.e. CDs, access codes etc. Nº de ref. del artículo: 00079525897
Cantidad disponible: 2 disponibles
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: PB-9781617297649
Cantidad disponible: 15 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: PB-9781617297649
Cantidad disponible: 15 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 43994855
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 43994855-n
Cantidad disponible: 1 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781617297649_new
Cantidad disponible: 2 disponibles
Librería: Rarewaves USA, OSWEGO, IL, Estados Unidos de America
Paperback. Condición: New. AI models can become so complex that even experts have difficulty understanding them-and forget about explaining the nuances of a cluster of novel algorithms to a business stakeholder! InterpretableAI is filled with cutting-edge techniques that will improve your understanding of how your AI models function. InterpretableAI is a hands-on guide to interpretability techniques that open up the black box of AI. This practical guide simplifies cutting edge research into transparent and explainable AI, delivering practical methods you can easily implement with Python and opensource libraries. With examples from all major machine learning approaches, this book demonstrates why some approaches to AI are so opaque, teaches you toidentify the patterns your model has learned, and presents best practices for building fair and unbiased models. How deep learning models produce their results is often a complete mystery, even to their creators. These AI"black boxes" can hide unknown issues-including data leakage, the replication of human bias, and difficulties complying with legal requirements such as the EU's "right to explanation." State-of-the-art interpretability techniques have been developed to understand even the most complex deep learning models, allowing humans to follow an AI's methods and to better detect when it has made a mistake. Nº de ref. del artículo: LU-9781617297649
Cantidad disponible: 10 disponibles
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Condición: New. 2022. 1st Edition. Paperback. . . . . . Nº de ref. del artículo: V9781617297649
Cantidad disponible: 2 disponibles
Librería: Rarewaves USA United, OSWEGO, IL, Estados Unidos de America
Paperback. Condición: New. AI models can become so complex that even experts have difficulty understanding them-and forget about explaining the nuances of a cluster of novel algorithms to a business stakeholder! InterpretableAI is filled with cutting-edge techniques that will improve your understanding of how your AI models function. InterpretableAI is a hands-on guide to interpretability techniques that open up the black box of AI. This practical guide simplifies cutting edge research into transparent and explainable AI, delivering practical methods you can easily implement with Python and opensource libraries. With examples from all major machine learning approaches, this book demonstrates why some approaches to AI are so opaque, teaches you toidentify the patterns your model has learned, and presents best practices for building fair and unbiased models. How deep learning models produce their results is often a complete mystery, even to their creators. These AI"black boxes" can hide unknown issues-including data leakage, the replication of human bias, and difficulties complying with legal requirements such as the EU's "right to explanation." State-of-the-art interpretability techniques have been developed to understand even the most complex deep learning models, allowing humans to follow an AI's methods and to better detect when it has made a mistake. Nº de ref. del artículo: LU-9781617297649
Cantidad disponible: 10 disponibles