Humans learn best from feedback―we are encouraged to take actions that lead to positive results while deterred by decisions with negative consequences. This reinforcement process can be applied to computer programs allowing them to solve more complex problems that classical programming cannot.
Deep Reinforcement Learning in Action teaches you the fundamental concepts and terminology of deep reinforcement learning, along with the practical skills and techniques you’ll need to implement it into your own projects.
Key features
• Structuring problems as Markov Decision Processes
• Popular algorithms such Deep Q-Networks, Policy Gradient method and Evolutionary Algorithms and the intuitions that drive them
• Applying reinforcement learning algorithms to real-world problems
Audience
You’ll need intermediate Python skills and a basic understanding of deep learning.
About the technology
Deep reinforcement learning is a form of machine learning in which AI agents learn optimal behavior from their own raw sensory input. The system perceives the environment, interprets the results of its past decisions, and uses this information to optimize its behavior for maximum long-term return. Deep reinforcement learning famously contributed to the success of AlphaGo but that’s not all it can do!
Alexander Zai is a Machine Learning Engineer at Amazon AI working on MXNet that powers a suite of AWS machine learning products. Brandon Brown is a Machine Learning and Data Analysis blogger at outlace.com committed to providing clear teaching on difficult topics for newcomers.
"Sinopsis" puede pertenecer a otra edición de este libro.
Alexander Zai is a Machine Learning Engineer at Amazon AI working on MXNet that powers a suite of AWS machine learning products. Brandon Brown is a Machine Learning and Data Analysis blogger at outlace.com committed to providing clear teaching on difficult topics for newcomers.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 4,61 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: PB-9781617295430
Cantidad disponible: 15 disponibles
Librería: Speedyhen, London, Reino Unido
Condición: NEW. Nº de ref. del artículo: NW9781617295430
Cantidad disponible: 4 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781617295430_new
Cantidad disponible: 4 disponibles
Librería: Romtrade Corp., STERLING HEIGHTS, MI, Estados Unidos de America
Condición: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Nº de ref. del artículo: ABNR-29826
Cantidad disponible: 5 disponibles
Librería: SMASS Sellers, IRVING, TX, Estados Unidos de America
Condición: New. Brand New Original US Edition. Customer service! Satisfaction Guaranteed. Nº de ref. del artículo: ASNT3-29826
Cantidad disponible: 5 disponibles
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Condición: New. 2020. 1st Edition. Paperback. . . . . . Nº de ref. del artículo: V9781617295430
Cantidad disponible: 4 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
Paperback. Condición: New. Nº de ref. del artículo: 6666-GRD-9781617295430
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. pp. 325. Nº de ref. del artículo: 380779534
Cantidad disponible: 2 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 325. Nº de ref. del artículo: 26382043089
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Neuware - Humans learn best from feedback-we are encouraged to take actions that lead to positive results while deterred by decisions with negative consequences. This reinforcement process can be applied to computer programs allowing them to solve more complex problems that classical programming cannot. Deep Reinforcement Learning in Action teaches you the fundamental concepts and terminology of deep reinforcement learning, along with the practical skills and techniques you'll need to implement it into your own projects.Key features- Structuring problems as Markov Decision Processes - Popular algorithms such Deep Q-Networks, Policy Gradient method and Evolutionary Algorithms and the intuitions that drive them - Applying reinforcement learning algorithms to real-world problemsAudienceYou'll need intermediate Python skills and a basic understanding of deep learning.About the technologyDeep reinforcement learning is a form of machine learning in which AI agents learn optimal behavior from their own raw sensory input. The system perceives the environment, interprets the results of its past decisions, and uses this information to optimize its behavior for maximum long-term return. Deep reinforcement learning famously contributed to the success of AlphaGo but that's not all it can do! Nº de ref. del artículo: 9781617295430
Cantidad disponible: 2 disponibles