Artículos relacionados a Jordan Canonical Form: Theory and Practice (Synthesis...

Jordan Canonical Form: Theory and Practice (Synthesis Lectures on Mathematics and Statistics) - Tapa blanda

 
9781608452507: Jordan Canonical Form: Theory and Practice (Synthesis Lectures on Mathematics and Statistics)

Sinopsis

Jordan Canonical Form (JCF) is one of the most important, and useful, concepts in linear algebra. The JCF of a linear transformation, or of a matrix, encodes all of the structural information about that linear transformation, or matrix. This book is a careful development of JCF. After beginning with background material, we introduce Jordan Canonical Form and related notions: eigenvalues, (generalized) eigenvectors, and the characteristic and minimum polynomials. We decide the question of diagonalizability, and prove the Cayley-Hamilton theorem. Then we present a careful and complete proof of the fundamental theorem: Let V be a finite-dimensional vector space over the field of complex numbers C, and let T : V - > V be a linear transformation. Then T has a Jordan Canonical Form. This theorem has an equivalent statement in terms of matrices: Let A be a square matrix with complex entries. Then A is similar to a matrix J in Jordan Canonical Form, i.e., there is an invertible matrix P and a matrix J in Jordan Canonical Form with A = PJP-1. We further present an algorithm to find P and J, assuming that one can factor the characteristic polynomial of A. In developing this algorithm we introduce the eigenstructure picture (ESP) of a matrix, a pictorial representation that makes JCF clear. The ESP of A determines J, and a refinement, the labeled eigenstructure picture (lESP) of A, determines P as well. We illustrate this algorithm with copious examples, and provide numerous exercises for the reader. Table of Contents: Fundamentals on Vector Spaces and Linear Transformations / The Structure of a Linear Transformation / An Algorithm for Jordan Canonical Form and Jordan Basis

"Sinopsis" puede pertenecer a otra edición de este libro.

Reseña del editor

Jordan Canonical Form (JCF) is one of the most important, and useful, concepts in linear algebra. The JCF of a linear transformation, or of a matrix, encodes all of the structural information about that linear transformation, or matrix. This book is a careful development of JCF. After beginning with background material, we introduce Jordan Canonical Form and related notions: eigenvalues, (generalized) eigenvectors, and the characteristic and minimum polynomials. We decide the question of diagonalizability, and prove the Cayley-Hamilton theorem. Then we present a careful and complete proof of the fundamental theorem: Let V be a finite-dimensional vector space over the field of complex numbers C, and let T : V → V be a linear transformation. Then T has a Jordan Canonical Form. This theorem has an equivalent statement in terms of matrices: Let A be a square matrix with complex entries. Then A is similar to a matrix J in Jordan Canonical Form, i.e., there is an invertible matrix P and a matrix J in Jordan Canonical Form with A = PJP-1. We further present an algorithm to find P and J, assuming that one can factor the characteristic polynomial of A. In developing this algorithm we introduce the eigenstructure picture (ESP) of a matrix, a pictorial representation that makes JCF clear. The ESP of A determines J, and a refinement, the labeled eigenstructure picture (ℓESP) of A, determines P as well. We illustrate this algorithm with copious examples, and provide numerous exercises for the reader. Table of Contents: Fundamentals on Vector Spaces and Linear Transformations / The Structure of a Linear Transformation / An Algorithm for Jordan Canonical Form and Jordan Basis

"Sobre este título" puede pertenecer a otra edición de este libro.

  • EditorialMorgan & Claypool Publishers
  • Año de publicación2009
  • ISBN 10 1608452506
  • ISBN 13 9781608452507
  • EncuadernaciónTapa blanda
  • IdiomaInglés
  • Número de páginas108
  • Contacto del fabricanteno disponible

Comprar usado

Condición: Excelente
Weintraub Steven H. Jordan Canonical...
Ver este artículo

EUR 19,00 gastos de envío desde Alemania a España

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9783031035265: Jordan Canonical Form: Theory and Practice

Edición Destacada

ISBN 10:  3031035267 ISBN 13:  9783031035265
Editorial: Springer, 2009
Tapa blanda

Resultados de la búsqueda para Jordan Canonical Form: Theory and Practice (Synthesis...

Imagen de archivo

Weintraub Steven H.
Publicado por Morgan & Claypool, 2009
ISBN 10: 1608452506 ISBN 13: 9781608452507
Antiguo o usado Softcover

Librería: Antiquariat Bücherkiste, Wuppertal, Alemania

Calificación del vendedor: 3 de 5 estrellas Valoración 3 estrellas, Más información sobre las valoraciones de los vendedores

Softcover. Condición: Sehr gut. Weintraub Steven H. Jordan Canonical Form Theory and Practice - Synthesis Lectures on Mathematics and Statistics SC - 19 x 23 cm - Verlag: Morgan & Claypool - 2009 - ISBN: 9781608452507 - 96 Seiten - Englisch Klappentext: Jordan Canonical Form (JCF) is one of the most important, and useful, concepts in linear algebra. The JCF of a linear transformation, or of a matrix, encodes all of the structural information about that linear transformation, or matrix. This book is a careful development ofJCE After beginning With background material, we introduce Jordan Canonical Form and related notions: eigenvalues, (generalized) eigenvectors, and the characteristic and minimum polynomials. We decide the question of diagonalizability, and prove the Cayley-Hamilton theorem. Then we present a careful and complete proof of the fundamental theorem: Let V be a finite-dimensional vector space over thefield ofcomplex numbers C, and let T: V --> 5 V be a linear transformation. Then T has a Jordan Canonical Form. This theorem has an equivalent statement in terms of matrices: LetA be a square matrix with complex entries. Then A is similar to a matrixJ in Jordan Canonical Form, i.e., there is an invertible matrix P a matrixJ in Jordan Canonical Form withA pp-l. We further present an algorithm to find P andJ, assuming that one can factor the characteristic polynomial ofA. In developing this algorithm we introduce the eigenstructure Picture (ESP) of a matrix, a pictorial representation that makes JCF Clear. The ESP of A determines J, and a refinement, the labelled eigenstructure Picture VESP) ofA, determines P as well. We illustrate this algorithm With copious examples, and provide numerous exercises for the reader. Zustand: SEHR GUT! Einband mit gnaz leichten Gebrauchsspuren, innen sehr sauber. Size: 19 x 23 Cm. Buch. Nº de ref. del artículo: 035566

Contactar al vendedor

Comprar usado

EUR 15,00
Convertir moneda
Gastos de envío: EUR 19,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Weintraub, Steven
Publicado por Morgan & Claypool Publishers, 2009
ISBN 10: 1608452506 ISBN 13: 9781608452507
Antiguo o usado paperback

Librería: suffolkbooks, Center moriches, NY, Estados Unidos de America

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

paperback. Condición: Very Good. Fast Shipping - Safe and Secure 7 days a week! Nº de ref. del artículo: 3TWOWA001MQZ

Contactar al vendedor

Comprar usado

EUR 39,74
Convertir moneda
Gastos de envío: EUR 64,59
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito