Artículos relacionados a Introduction to Semi-Supervised Learning (Synthesis...

Introduction to Semi-Supervised Learning (Synthesis Lectures on Artificial Intelligence and Machine Learning) - Tapa blanda

 
9781598295474: Introduction to Semi-Supervised Learning (Synthesis Lectures on Artificial Intelligence and Machine Learning)

Sinopsis

Páginas:132Géneros:12:UYQ:ArtificialintelligenceSinopsis:Semi-supervisedlearningisalearningparadigmconcernedwiththestudyofhowcomputersandnaturalsystemssuchashumanslearninthepresenceofbothlabeledandunlabeleddata.Traditionally,learninghasbeenstudiedeitherintheunsupervisedparadigm(e.g.,clustering,outlierdetection)whereallthedataareunlabeled,orinthesupervisedparadigm(e.g.,classification,regression)whereallthedataarelabeled.Thegoalofsemi-supervisedlearningistounderstandhowcombininglabeledandunlabeleddatamaychangethelearningbehavior,anddesignalgorithmsthattakeadvantageofsuchacombination.Semi-supervisedlearningisofgreatinterestinmachinelearninganddataminingbecauseitcanusereadilyavailableunlabeleddatatoimprovesupervisedlearningtaskswhenthelabeleddataarescarceorexpensive.Semi-supervisedlearningalsoshowspotentialasaquantitativetooltounderstandhumancategorylearning,wheremostoftheinputisself-evidentlyunlabeled.Inthisintroductorybook,wepresentsomepopularsemi-supervisedlearningmodels,includingself-training,mixturemodels,co-trainingandmultiviewlearning,graph-basedmethods,andsemi-supervisedsupportvectormachines.Foreachmodel,wediscussitsbasicmathematicalformulation.Thesuccessofsemi-supervisedlearningdependscriticallyonsomeunderlyingassumptions.Weemphasizetheassumptionsmadebyeachmodelandgivecounterexampleswhenappropriatetodemonstratethelimitationsofthedifferentmodels.Inaddition,wediscusssemi-supervisedlearningforcognitivepsychology.Finally,wegiveacomputationallearningtheoreticperspectiveonsemi-supervisedlearning,andweconcludethebookwithabriefdiscussionofopenquestionsinthefield.TableofContents

"Sinopsis" puede pertenecer a otra edición de este libro.

Reseña del editor

Semi-supervised learning is a learning paradigm concerned with the study of how computers and natural systems such as humans learn in the presence of both labeled and unlabeled data. Traditionally, learning has been studied either in the unsupervised paradigm (e.g., clustering, outlier detection) where all the data is unlabeled, or in the supervised paradigm (e.g., classification, regression) where all the data is labeled.The goal of semi-supervised learning is to understand how combining labeled and unlabeled data may change the learning behavior, and design algorithms that take advantage of such a combination. Semi-supervised learning is of great interest in machine learning and data mining because it can use readily available unlabeled data to improve supervised learning tasks when the labeled data is scarce or expensive. Semi-supervised learning also shows potential as a quantitative tool to understand human category learning, where most of the input is self-evidently unlabeled. In this introductory book, we present some popular semi-supervised learning models, including self-training, mixture models, co-training and multiview learning, graph-based methods, and semi-supervised support vector machines. For each model, we discuss its basic mathematical formulation. The success of semi-supervised learning depends critically on some underlying assumptions. We emphasize the assumptions made by each model and give counterexamples when appropriate to demonstrate the limitations of the different models. In addition, we discuss semi-supervised learning for cognitive psychology. Finally, we give a computational learning theoretic perspective on semi-supervised learning, and we conclude the book with a brief discussion of open questions in the field.

"Sobre este título" puede pertenecer a otra edición de este libro.

  • EditorialMorgan and Claypool Publishers
  • Año de publicación2009
  • ISBN 10 1598295470
  • ISBN 13 9781598295474
  • EncuadernaciónTapa blanda
  • IdiomaInglés
  • Número de páginas130
  • Contacto del fabricanteno disponible

Comprar usado

Condición: Bien
stains on pages and the side **...
Ver este artículo

EUR 8,92 gastos de envío desde Reino Unido a España

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9783031004209: Introduction to Semi-Supervised Learning (Synthesis Lectures on Artificial Intelligence and Machine Learning)

Edición Destacada

ISBN 10:  3031004205 ISBN 13:  9783031004209
Editorial: Springer, 2009
Tapa blanda

Resultados de la búsqueda para Introduction to Semi-Supervised Learning (Synthesis...

Imagen de archivo

Xiaojin Zhu; Andrew B. Goldberg
Publicado por Morgan and Claypool Publishers, 2009
ISBN 10: 1598295470 ISBN 13: 9781598295474
Antiguo o usado Paperback

Librería: Greener Books, London, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: Used; Very Good. stains on pages and the side **SHIPPED FROM UK** We believe you will be completely satisfied with our quick and reliable service. All orders are dispatched as swiftly as possible! Buy with confidence! Greener Books. Nº de ref. del artículo: 4759954

Contactar al vendedor

Comprar usado

EUR 42,00
Convertir moneda
Gastos de envío: EUR 8,92
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito