Artículos relacionados a Spectral Analysis of Signals: The Missing Data Case...

Spectral Analysis of Signals: The Missing Data Case (Synthesis Lectures on Signal Processing) - Tapa blanda

 
9781598290004: Spectral Analysis of Signals: The Missing Data Case (Synthesis Lectures on Signal Processing)

Sinopsis

Spectral estimation is important in many fields including astronomy, meteorology, seismology, communications, economics, speech analysis, medical imaging, radar, sonar, and underwater acoustics. Most existing spectral estimation algorithms are devised for uniformly sampled complete-data sequences. However, the spectral estimation for data sequences with missing samples is also important in many applications ranging from astronomical time series analysis to synthetic aperture radar imaging with angular diversity. For spectral estimation in the missing-data case, the challenge is how to extend the existing spectral estimation techniques to deal with these missing-data samples. Recently, nonparametric adaptive filtering based techniques have been developed successfully for various missing-data problems. Collectively, these algorithms provide a comprehensive toolset for the missing-data problem based exclusively on the nonparametric adaptive filter-bank approaches, which are robust and accurate, and can provide high resolution and low sidelobes. In this book, we present these algorithms for both one-dimensional and two-dimensional spectral estimation problems.

"Sinopsis" puede pertenecer a otra edición de este libro.

Reseña del editor

Spectral estimation is important in many fields including astronomy, meteorology, seismology, communications, economics, speech analysis, medical imaging, radar, sonar, and underwater acoustics. Most existing spectral estimation algorithms are devised for uniformly sampled complete-data sequences. However, the spectral estimation for data sequences with missing samples is also important in many applications ranging from astronomical time series analysis to synthetic aperture radar imaging with angular diversity. For spectral estimation in the missing-data case, the challenge is how to extend the existing spectral estimation techniques to deal with these missing-data samples. Recently, nonparametric adaptive filtering based techniques have been developed successfully for various missing-data problems. Collectively, these algorithms provide a comprehensive toolset for the missing-data problem based exclusively on the nonparametric adaptive filter-bank approaches, which are robust and accurate, and can provide high resolution and low sidelobes. In this book, we present these algorithms for both one-dimensional and two-dimensional spectral estimation problems.

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar nuevo

Ver este artículo

EUR 38,35 gastos de envío desde Estados Unidos de America a España

Destinos, gastos y plazos de envío

Resultados de la búsqueda para Spectral Analysis of Signals: The Missing Data Case...

Imagen de archivo

Wang, Yanwei
Publicado por Morgan and Claypool Publishers, 2005
ISBN 10: 1598290002 ISBN 13: 9781598290004
Nuevo Paperback

Librería: The Book Spot, Sioux Falls, MN, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: New. Nº de ref. del artículo: Abebooks488366

Contactar al vendedor

Comprar nuevo

EUR 86,90
Convertir moneda
Gastos de envío: EUR 38,35
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito