For many applications, including power generation, aerospace and the automobile industry, high temperature wear provides serious difficulties where two or more surfaces move or slide relative to one another. In aerospace, for example, demands for more powerful, efficient engines operating at ever higher temperatures, mean that conventional lubrication is no longer sufficient to prevent direct contact between metallic sliding surfaces, accelerating wear. However, one high temperature phenomenon observed to reduce metallic contact, and thus wear and friction, is the formation of ’glazes’,essentially compacted oxide wear debris layers that sinter together to form wear resistant surfaces. This thesis studies the nature of wear encountered with four different combinations of Superalloys, slid together using a ’block-on-cylinder’ configuration (Nimonic 80A and Incoloy MA956 as block / sample materials; Stellite 6 and Incoloy 800HT as cylinder / counterface materials) simulating car (automobile) engine ’valve-on-valve-seat’ wear. Initially this study concentrates on the combined effects of sliding speed (either 0.314 m/s or 0.905 m/s, supplementing previous testing at 0.654 m/s) and temperature (between room temperature and 750°C) - by altering either or both of these variables, the nature of the wear process can be radically altered, encouraging or suppressing wear protective oxide or ’glaze’ layer formation. Extensive characterisation is conducted of the ’glaze’ layers during this study, using a wide range of tools including optical microscopy, SEM, EDX (spot, mapping and Autopoint), XRD (including Glancing Angle) and micro-hardness. On selected samples, TEM and STM show these ’glaze’ layers to be nano-structured (nano-crystalline), with an estimated grain size of as little as 2 to 10 nm.
"Sinopsis" puede pertenecer a otra edición de este libro.
For many applications, including power generation, aerospace and the automobile industry, high temperature wear provides serious difficulties where two or more surfaces move or slide relative to one another. In aerospace, for example, demands for more powerful, efficient engines operating at ever higher temperatures, mean that conventional lubrication is no longer sufficient to prevent direct contact between metallic sliding surfaces, accelerating wear. However, one high temperature phenomenon observed to reduce metallic contact, and thus wear and friction, is the formation of 'glazes',essentially compacted oxide wear debris layers that sinter together to form wear resistant surfaces. This thesis studies the nature of wear encountered with four different combinations of Superalloys, slid together using a 'block-on-cylinder' configuration (Nimonic 80A and Incoloy MA956 as block / sample materials; Stellite 6 and Incoloy 800HT as cylinder / counterface materials) simulating car (automobile) engine 'valve-on-valve-seat' wear. Initially this study concentrates on the combined effects of sliding speed (either 0.314 m/s or 0.905 m/s, supplementing previous testing at 0.654 m/s) and temperature (between room temperature and 750°C) - by altering either or both of these variables, the nature of the wear process can be radically altered, encouraging or suppressing wear protective oxide or 'glaze' layer formation. Extensive characterisation is conducted of the 'glaze' layers during this study, using a wide range of tools including optical microscopy, SEM, EDX (spot, mapping and Autopoint), XRD (including Glancing Angle) and micro-hardness. On selected samples, TEM and STM show these 'glaze' layers to be nano-structured (nano-crystalline), with an estimated grain size of as little as 2 to 10 nm.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 17,20 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoEUR 5,15 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781581123210_new
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9781581123210
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
PAP. Condición: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9781581123210
Cantidad disponible: Más de 20 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 694. Nº de ref. del artículo: C9781581123210
Cantidad disponible: Más de 20 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
PF. Condición: New. Nº de ref. del artículo: 6666-IUK-9781581123210
Cantidad disponible: 10 disponibles
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
Paperback or Softback. Condición: New. Compacted Oxide Layer Formation under Conditions of Limited Debris Retention at the Wear Interface during High Temperature Sliding Wear of Superalloys 1.46. Book. Nº de ref. del artículo: BBS-9781581123210
Cantidad disponible: 5 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 4354737-n
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 4354737-n
Cantidad disponible: Más de 20 disponibles
Librería: Best Price, Torrance, CA, Estados Unidos de America
Condición: New. SUPER FAST SHIPPING. Nº de ref. del artículo: 9781581123210
Cantidad disponible: 1 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - For many applications, including power generation, aerospace and the automobile industry, high temperature wear provides serious difficulties where two or more surfaces move or slide relative to one another. In aerospace, for example, demands for more powerful, efficient engines operating at ever higher temperatures, mean that conventional lubrication is no longer sufficient to prevent direct contact between metallic sliding surfaces, accelerating wear. However, one high temperature phenomenon observed to reduce metallic contact, and thus wear and friction, is the formation of 'glazes',essentially compacted oxide wear debris layers that sinter together to form wear resistant surfaces. This thesis studies the nature of wear encountered with four different combinations of Superalloys, slid together using a 'block-on-cylinder' configuration (Nimonic 80A and Incoloy MA956 as block / sample materials; Stellite 6 and Incoloy 800HT as cylinder / counterface materials) simulating car (automobile) engine 'valve-on-valve-seat' wear. Initially this study concentrates on the combined effects of sliding speed (either 0.314 m/s or 0.905 m/s, supplementing previous testing at 0.654 m/s) and temperature (between room temperature and 750°C) - by altering either or both of these variables, the nature of the wear process can be radically altered, encouraging or suppressing wear protective oxide or 'glaze' layer formation. Extensive characterisation is conducted of the 'glaze' layers during this study, using a wide range of tools including optical microscopy, SEM, EDX (spot, mapping and Autopoint), XRD (including Glancing Angle) and micro-hardness. On selected samples, TEM and STM show these 'glaze' layers to be nano-structured (nano-crystalline), with an estimated grain size of as little as 2 to 10 nm. Nº de ref. del artículo: 9781581123210
Cantidad disponible: 1 disponibles