Semi-supervised learning is an important area of machine learning. It deals with problems that involve a lot of unlabeled data and very scarce labeled data. The book focuses on some state-of-the-art research on semi-supervised learning. In the first chapter, Weng, Dornaika and Jin introduce a graph construction algorithm named the constrained data self-representative graph construction (CSRGC). In the second chapter, to reduce the graph construction complexity, Zhang et al. use anchors that were a special subset chosen from the original data to construct the full graph, while randomness was injected into graphs to improve the classification accuracy and deal with the high dimensionality issue. In the third chapter, Dornaika et al. introduces a kernel version of the Flexible Manifold Embedding (KFME) algorithm. In the fourth chapter, Zhang et al. present an efficient and robust graph-based transductive classification method known as the minimum tree cut (MTC), for large scale applications. In the fifth chapter, Salazar, Safont and Vergara investigated the performance of semi-supervised learning methods in two-class classification problems with a scarce population of one of the classes. In the sixth chapter, by breaking the sample identically and independently distributed (i.i.d.) assumption, one novel framework called the field support vector machine (F-SVM) with both classification (F-SVC) and regression (F-SVR) purposes is introduced. In the seventh chapter, Gong employs the curriculum learning methodology by investigating the difficulty of classifying every unlabeled example. As a result, an optimized classification sequence was generated during the iterative propagations, and the unlabeled examples are logically classified from simple to difficult. In the eighth chapter, Tang combines semi-supervised learning with geo-tagged photo streams and concept detection to explore situation recognition. This book is suitable for university students (undergraduate or graduate) in computer science, statistics, electrical engineering, or anyone else who would potentially use machine learning algorithms; professors, who research artificial intelligence, pattern recognition, machine learning, data mining and related fields; and engineers, who apply machine learning models into their products.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 2,36 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoEUR 5,97 gastos de envío desde Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 32723670
Cantidad disponible: 1 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
HRD. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: GZ-9781536135565
Cantidad disponible: 1 disponibles
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Condición: New. 2018. Hardcover. . . . . . Nº de ref. del artículo: V9781536135565
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 32723670-n
Cantidad disponible: 1 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 32723670-n
Cantidad disponible: 1 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 32723670
Cantidad disponible: 1 disponibles
Librería: moluna, Greven, Alemania
Gebunden. Condición: New. KlappentextrnrnSemi-supervised learning is an important area of machine learning. It deals with problems that involve a lot of unlabeled data and very scarce labeled data. The book focuses on some state-of-the-art research on semi-supervised lea. Nº de ref. del artículo: 596273173
Cantidad disponible: 1 disponibles
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
Condición: New. 2018. Hardcover. . . . . . Books ship from the US and Ireland. Nº de ref. del artículo: V9781536135565
Cantidad disponible: 1 disponibles
Librería: Mispah books, Redhill, SURRE, Reino Unido
hardcover. Condición: New. New. book. Nº de ref. del artículo: ERICA82915361355696
Cantidad disponible: 1 disponibles