Computational Aspects of Polynomial Identities: Volume l, Kemer’s Theorems, 2nd Edition presents the underlying ideas in recent polynomial identity (PI)-theory and demonstrates the validity of the proofs of PI-theorems. This edition gives all the details involved in Kemer’s proof of Specht’s conjecture for affine PI-algebras in characteristic 0.
The book first discusses the theory needed for Kemer’s proof, including the featured role of Grassmann algebra and the translation to superalgebras. The authors develop Kemer polynomials for arbitrary varieties as tools for proving diverse theorems. They also lay the groundwork for analogous theorems that have recently been proved for Lie algebras and alternative algebras. They then describe counterexamples to Specht’s conjecture in characteristic p as well as the underlying theory. The book also covers Noetherian PI-algebras, Poincaré–Hilbert series, Gelfand–Kirillov dimension, the combinatoric theory of affine PI-algebras, and homogeneous identities in terms of the representation theory of the general linear group GL.
Through the theory of Kemer polynomials, this edition shows that the techniques of finite dimensional algebras are available for all affine PI-algebras. It also emphasizes the Grassmann algebra as a recurring theme, including in Rosset’s proof of the Amitsur–Levitzki theorem, a simple example of a finitely based T-ideal, the link between algebras and superalgebras, and a test algebra for counterexamples in characteristic p.
"Sinopsis" puede pertenecer a otra edición de este libro.
Alexei Kanel-Belov is a professor in the Department of Mathematics at Bar-Ilan University. His research interests include ring theory, semigroup theory, polynomial automorphisms, quantization, symbolical dynamic combinatorial geometry and its mechanical applications, elementary mathematics, and mathematical education.
Yakov Karasik completed his doctorate at the Department of Mathematics at Technion - Israel Institute of Technology.
Louis Halle Rowen is a professor in the Department of Mathematics at Bar-Ilan University. His research interests include noncommutative algebra, finite dimensional division algebras, the structure theory of rings, and tropical algebras.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 28,66 gastos de envío desde Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envíoEUR 3,40 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: Mispah books, Redhill, SURRE, Reino Unido
Hardcover. Condición: Like New. Like New. book. Nº de ref. del artículo: ERICA75814987200805
Cantidad disponible: 1 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 26372333832
Cantidad disponible: 3 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Alexei Kanel-Belov is a professor in the Department of Mathematics at Bar-Ilan University. His research interests include ring theory, semigroup theory, polynomial automorphisms, quantization, symbolical dynamic combinatorial geometry an. Nº de ref. del artículo: 596130176
Cantidad disponible: Más de 20 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. Nº de ref. del artículo: 18372333826
Cantidad disponible: 3 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Hardcover. Condición: Brand New. 2nd edition. 424 pages. 9.53x6.46x1.14 inches. In Stock. Nº de ref. del artículo: __1498720080
Cantidad disponible: 1 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Buch. Condición: Neu. Neuware - This edition presents the underlying ideas in recent polynomial identity (PI)-theory and demonstrates the validity of the proofs of PI-theorems. It gives all the details involved in Kemer's proof of Specht's conjecture for affine PI-algebras in characteristic 0. This edition presents a tighter formulation of Zubrilin's theory and contains a more. Nº de ref. del artículo: 9781498720083
Cantidad disponible: 2 disponibles