Focused on the mathematical foundations of social media analysis, Graph-Based Social Media Analysis provides a comprehensive introduction to the use of graph analysis in the study of social and digital media. It addresses an important scientific and technological challenge, namely the confluence of graph analysis and network theory with linear algebra, digital media, machine learning, big data analysis, and signal processing.
Supplying an overview of graph-based social media analysis, the book provides readers with a clear understanding of social media structure. It uses graph theory, particularly the algebraic description and analysis of graphs, in social media studies.
The book emphasizes the big data aspects of social and digital media. It presents various approaches to storing vast amounts of data online and retrieving that data in real-time. It demystifies complex social media phenomena, such as information diffusion, marketing and recommendation systems in social media, and evolving systems. It also covers emerging trends, such as big data analysis and social media evolution.
Describing how to conduct proper analysis of the social and digital media markets, the book provides insights into processing, storing, and visualizing big social media data and social graphs. It includes coverage of graphs in social and digital media, graph and hyper-graph fundamentals, mathematical foundations coming from linear algebra, algebraic graph analysis, graph clustering, community detection, graph matching, web search based on ranking, label propagation and diffusion in social media, graph-based pattern recognition and machine learning, graph-based pattern classification and dimensionality reduction, and much more.
This book is an ideal reference for scientists and engineers working in social media and digital media production and distribution. It is also suitable for use as a textbook in undergraduate or graduate courses on digital media, social media, or social networks.
"Sinopsis" puede pertenecer a otra edición de este libro.
Prof. Ioannis Pitas (IEEE fellow, IEEE Distinguished Lecturer, EURASIP fellow) earned his PhD degree from the Department of Electrical Engineering, Aristotle University of Thessaloniki, Greece. He has been a Professor at the Department of Informatics at the same university since 1994 and has served as a visiting professor at several universities.
His current interests are in the areas of intelligent digital media, image/video processing, machine learning, and human-centered computing. He has published over 800 papers, contributed in 44 books in his areas of interest, and edited or co-authored another 10 books. He has also been a member of the program committee of many scientific conferences and workshops. In the past, he has served as an associate editor or co-editor of eight international journals and was General or Technical Chair of four international conferences. He participated in 68 R&D projects, primarily funded by the European Union and is/was principal investigator/researcher in 40 such projects. He has 20600+ citations to his work and h-index 67+ (2015).
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 17,51 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoEUR 10,33 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: Majestic Books, Hounslow, Reino Unido
Condición: New. pp. 304. Nº de ref. del artículo: 373706765
Cantidad disponible: 3 disponibles
Librería: moluna, Greven, Alemania
Gebunden. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Prof. Ioannis Pitas (IEEE fellow, IEEE Distinguished Lecturer, EURASIP fellow) earned his PhD degree from the Department of Electrical Engineering, Aristotle University of Thessaloniki, Greece. He has been a Professor at the Department o. Nº de ref. del artículo: 596130150
Cantidad disponible: Más de 20 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Hardcover. Condición: Brand New. 304 pages. 10.31x7.13x1.10 inches. In Stock. Nº de ref. del artículo: __149871904X
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 24019954-n
Cantidad disponible: 10 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 24019954-n
Cantidad disponible: 10 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 304. Nº de ref. del artículo: 26372371410
Cantidad disponible: 4 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Buch. Condición: Neu. Neuware - This book provides a comprehensive introduction to the use of graph analysis in the study of social media and digital media. It covers the following topics: graphs in social media, graph theory, algebraic analysis of graphs, graph clustering, diffusion in social media, label propagation in graphs, graphs in pattern recognition and machine learning, tensors in graph analysis, recommendation systems based on hypergraphs, big data approaches for social media and graph clustering and graph-based approaches for evolving social data. Nº de ref. del artículo: 9781498719049
Cantidad disponible: 2 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. pp. 304. Nº de ref. del artículo: 18372371416
Cantidad disponible: 3 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 24019954
Cantidad disponible: 10 disponibles
Librería: Mispah books, Redhill, SURRE, Reino Unido
Hardcover. Condición: Like New. Like New. book. Nº de ref. del artículo: ERICA758149871904X5
Cantidad disponible: 1 disponibles