This textbook adopts a unique approach to helping developers and CS students learn Hadoop MapReduce programming fast in an easy-to-setup, virtual 4-node Linux YARN cluster on a Windows laptop. Rather than filled with disjointed, piecemeal code snippets to show Hadoop MapReduce programming features one at a time, it is designed to place your total Hadoop MapReduce programming learning process in a common application context of mining customer spending patterns ensconced in large volumes of credit card transaction record data. Precise, end-to-end procedures are given to help you set up your Hadoop MapReduce development environment quickly on Eclipse with Maven on Windows. Step-by-step procedures are also given on how to set up a four-node Linux cluster at minimum so that you can run your MapReduce programs not only in local but also in standalone and fully distributed mode on a real cluster. In fact, all MapReduce programs presented in the book have been tested and verified on such a Linux cluster. This textbook mainly focuses on teaching Hadoop MapReduce programming in a scientific, objective, quantitative approach. Rather than heavily relying on subjective, verbose (and sometimes even pompous) textual descriptions with sparse code snippets, this textbook uses Hadoop Java APIs, Hadoop configuration parameters, complete MapReduce programs and their execution logs and outputs to demonstrate how Hadoop MapReduce framework works and how to write MapReduce programs. Specifically, this text covers the following subjects: * Introduction to Hadoop * Setting up a Linux Hadoop Cluster * The Hadoop Distributed FileSystem * MapReduce Job Orchestration and Workflows * Basic MapReduce Programming * Advanced MapReduce Programming * Hadoop Streaming * Hadoop Administration No matter what role you play on your team, this text can help you gain truly applicable Hadoop skills in a most effective and efficient manner. The book can also be used as a supplementary textbook for a distributed computing or Hadoop course offered to upper-division CS students.
"Sinopsis" puede pertenecer a otra edición de este libro.
This textbook adopts a unique approach to helping developers and CS students learn Hadoop MapReduce programming fast in an easy-to-setup, virtual 4-node Linux YARN cluster on a Windows laptop. Rather than filled with disjointed, piecemeal code snippets to show Hadoop MapReduce programming features one at a time, it is designed to place your total Hadoop MapReduce programming learning process in a common application context of mining customer spending patterns ensconced in large volumes of credit card transaction record data. Precise, end-to-end procedures are given to help you set up your Hadoop MapReduce development environment quickly on Eclipse with Maven on Windows. Step-by-step procedures are also given on how to set up a four-node Linux cluster at minimum so that you can run your MapReduce programs not only in local but also in standalone and fully distributed mode on a real cluster. In fact, all MapReduce programs presented in the book have been tested and verified on such a Linux cluster. This textbook mainly focuses on teaching Hadoop MapReduce programming in a scientific, objective, quantitative approach. Rather than heavily relying on subjective, verbose (and sometimes even pompous) textual descriptions with sparse code snippets, this textbook uses Hadoop Java APIs, Hadoop configuration parameters, complete MapReduce programs and their execution logs and outputs to demonstrate how Hadoop MapReduce framework works and how to write MapReduce programs. Specifically, this text covers the following subjects: * Introduction to Hadoop * Setting up a Linux Hadoop Cluster * The Hadoop Distributed FileSystem * MapReduce Job Orchestration and Workflows * Basic MapReduce Programming * Advanced MapReduce Programming * Hadoop Streaming * Hadoop Administration No matter what role you play on your team, this text can help you gain truly applicable Hadoop skills in a most effective and efficient manner. The book can also be used as a supplementary textbook for a distributed computing or Hadoop course offered to upper-division CS students.
"Sobre este título" puede pertenecer a otra edición de este libro.
GRATIS gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoEUR 7,65 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: ThriftBooks-Dallas, Dallas, TX, Estados Unidos de America
Paperback. Condición: Very Good. No Jacket. May have limited writing in cover pages. Pages are unmarked. ~ ThriftBooks: Read More, Spend Less 1.3. Nº de ref. del artículo: G1495496120I4N00
Cantidad disponible: 1 disponibles
Librería: HPB-Red, Dallas, TX, Estados Unidos de America
Paperback. Condición: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Nº de ref. del artículo: S_373392985
Cantidad disponible: 1 disponibles
Librería: Best Price, Torrance, CA, Estados Unidos de America
Condición: New. SUPER FAST SHIPPING. Nº de ref. del artículo: 9781495496127
Cantidad disponible: 2 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 556. Nº de ref. del artículo: C9781495496127
Cantidad disponible: Más de 20 disponibles
Librería: CitiRetail, Stevenage, Reino Unido
Paperback. Condición: new. Paperback. This textbook adopts a unique approach to helping developers and CS students learn Hadoop MapReduce programming fast in an easy-to-setup, virtual 4-node Linux YARN cluster on a Windows laptop. Rather than filled with disjointed, piecemeal code snippets to show Hadoop MapReduce programming features one at a time, it is designed to place your total Hadoop MapReduce programming learning process in a common application context of mining customer spending patterns ensconced in large volumes of credit card transaction record data. Precise, end-to-end procedures are given to help you set up your Hadoop MapReduce development environment quickly on Eclipse with Maven on Windows. Step-by-step procedures are also given on how to set up a four-node Linux cluster at minimum so that you can run your MapReduce programs not only in local but also in standalone and fully distributed mode on a real cluster. In fact, all MapReduce programs presented in the book have been tested and verified on such a Linux cluster. This textbook mainly focuses on teaching Hadoop MapReduce programming in a scientific, objective, quantitative approach. Rather than heavily relying on subjective, verbose (and sometimes even pompous) textual descriptions with sparse code snippets, this textbook uses Hadoop Java APIs, Hadoop configuration parameters, complete MapReduce programs and their execution logs and outputs to demonstrate how Hadoop MapReduce framework works and how to write MapReduce programs. Specifically, this text covers the following subjects: * Introduction to Hadoop * Setting up a Linux Hadoop Cluster * The Hadoop Distributed FileSystem * MapReduce Job Orchestration and Workflows * Basic MapReduce Programming * Advanced MapReduce Programming * Hadoop Streaming * Hadoop Administration No matter what role you play on your team, this text can help you gain truly applicable Hadoop skills in a most effective and efficient manner. The book can also be used as a supplementary textbook for a distributed computing or Hadoop course offered to upper-division CS students. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Nº de ref. del artículo: 9781495496127
Cantidad disponible: 1 disponibles