Artículos relacionados a Optimization Techniques in Statistics

Optimization Techniques in Statistics - Tapa blanda

 
9781493307425: Optimization Techniques in Statistics

Sinopsis

Statistics help guide us to optimal decisions under uncertainty. A large variety of statistical problems are essentially solutions to optimization problems. The mathematical techniques of optimization are fundamentalto statistical theory and practice. In this book, Jagdish Rustagi provides full-spectrum coverage of these methods, ranging from classical optimization and Lagrange multipliers, to numerical techniques using gradients or direct search, to linear, nonlinear, and dynamic programming using the Kuhn-Tucker conditions or the Pontryagin maximal principle. Variational methods and optimization in function spaces are also discussed, as are stochastic optimization in simulation, including annealing methods. The text features numerous applications, including: Finding maximum likelihood estimatesMarkov decision processesProgramming methods used to optimize monitoring of patients in hospitalsDerivation of the Neyman-Pearson lemmaThe search for optimal designsSimulation of a steel millSuitable as both a reference and a text, this book will be of interest to advanced undergraduate or beginning graduate students in statistics, operations research, management and engineering sciences, and related fields. Most of the material can be covered in one semester by students with a basic background in probability and statistics.

"Sinopsis" puede pertenecer a otra edición de este libro.

Reseña del editor

Statistics help guide us to optimal decisions under uncertainty. A large variety of statistical problems are essentially solutions to optimization problems. The mathematical techniques of optimization are fundamentalto statistical theory and practice. In this book, Jagdish Rustagi provides full-spectrum coverage of these methods, ranging from classical optimization and Lagrange multipliers, to numerical techniques using gradients or direct search, to linear, nonlinear, and dynamic programming using the Kuhn-Tucker conditions or the Pontryagin maximal principle. Variational methods and optimization in function spaces are also discussed, as are stochastic optimization in simulation, including annealing methods. The text features numerous applications, including: Finding maximum likelihood estimatesMarkov decision processesProgramming methods used to optimize monitoring of patients in hospitalsDerivation of the Neyman-Pearson lemmaThe search for optimal designsSimulation of a steel millSuitable as both a reference and a text, this book will be of interest to advanced undergraduate or beginning graduate students in statistics, operations research, management and engineering sciences, and related fields. Most of the material can be covered in one semester by students with a basic background in probability and statistics.

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar nuevo

Ver este artículo

EUR 11,56 gastos de envío desde Reino Unido a España

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9780126045550: Optimization Techniques in Statistics (Statistical Modeling and Decision Science)

Edición Destacada

ISBN 10:  0126045550 ISBN 13:  9780126045550
Editorial: Academic Press Inc, 1994
Tapa dura

Resultados de la búsqueda para Optimization Techniques in Statistics

Imagen de archivo

Jagdish S. Rustagi
Publicado por Academic Press, 2014
ISBN 10: 1493307428 ISBN 13: 9781493307425
Nuevo Paperback

Librería: Revaluation Books, Exeter, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: Brand New. 376 pages. 9.25x6.00x0.85 inches. In Stock. Nº de ref. del artículo: zk1493307428

Contactar al vendedor

Comprar nuevo

EUR 137,44
Convertir moneda
Gastos de envío: EUR 11,56
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito