Artículos relacionados a Ordinary and Partial Differential Equations: Third...

Ordinary and Partial Differential Equations: Third Year College Course For Mathematicians, Physicists, and Engineers - Tapa blanda

 
9781492220183: Ordinary and Partial Differential Equations: Third Year College Course For Mathematicians, Physicists, and Engineers

Sinopsis

This book comprises a course in differential equations, which students of engineering, physics, and mathematics complete as a requirement of bachelor in science degree. The reader must possess basic skills in calculus, since all elementary differentiations and integrations in this book assume that the student could visually spot the derivation from previous years in high school or college. The book is organized in the logical fashion as presented to college students. The ordinary differential equations (o.d.e.) are first studied in great details, since partial differential equations (p.d.e.) must be rendered ordinary by separation of variables so as yield meaningful solution. When separation of variables is untenable (such as in nonlinear partial differential equations), then referrals to numerical solutions are given. Within the scope of o.d.e., first- and second-order differential equations are discussed in details, also since equations of higher orders could be reduced in order by successive methods of substitutions, discussed in the book. Also, within the scope of o.d.e., equations with constant coefficients are dealt with greater details, since variable coefficients could be rendered constants by interim substitutions and reverse substations. Also, dealt with is the reduction of higher degrees of variables to lesser degrees. The following is a brief outline of the topics discussed in the book: Separable exact o.d.e o Homogeneous first-order o.d.e. o Homogenizing first-order o.d.e. with quadratic polynomial o Condition for a total derivative o Solving first-order o.d.e. by integrating factor o Solving first-order o.d.e. by product of two arbitrary functions g(x)f(x) o Solving first-order o.d.e. of higher degree by reduction of degree followed by using product of two arbitrary functions g(x)f(x) o Solving first-order o.d.e. of 2nd-degree by means of quadratic roots. o Solving first-order o.d.e. of 2nd-degree by substitutive reduction to 1st-degree o Parametric integration of first-order o.d.e. of 2nd-degree to express y in terms of powers in y'. o General solution of Clairaut’s equation. o General solution of Lagrange’s equation. o Orthogonal curves of fluid flow. o Orthogonal projection of curves. o Isogonal projection of curves. o Solution of second-order o.d.e. by reducing it to first-order o Solution of second-order o.d.e. and higher degree by reducing it to first-order. o Conditions required for general solution of homogeneous o.d.e. o Reducing order of o.d.e. when a particular solution is know. o Characteristic equations and solution of 2nd-order o.d.e. by D-Operator. o Characteristic equations and solution of 2nd-order o.d.e. with complex roots. o General and particular solutions of the non-homogenous 2nd-order o.d.e. o Integrating 4th-order nonhomogeneous o.d.e. with sine function by using the Inverse D-Operator. o Simultaneous solution of 1st-order o.d.e. o Simultaneous solution of 2nd-order o.d.e. o Order reduction of 3rd-order nonhomogeneous o.d.e. by known particular solution o Solving 2nd-order o.d.e by product of two arbitrary functions g(x)f(x). o Solution of 2nd-order nonhomogenous o.d.e. by the method of variable parameters o Solution by the method of change of the independent variable x o Solution of 2nd-order o.d.e. by power series. o Solution of 2nd-order o.d.e. by power series by Frobenius’s method. o Airy-Lévy’s equation o Elastic Vibration o Heat Equation o Laplace Equation o Wave Equation o Free oscillation or homogeneous o.d.e. o Forced oscillation or nonhomogeneous o.d.e. o Euler’s elastic bending problem. o Whirling of elastic rod. o Transverse wave transmission in a vertical elastic body. o Propagation of sound waves in gas medium. o Flow of electricity in wire. o Telegraph Equations: o Radio Equations o Heat conducting plate with rectangular cross-section. o One dimensional variable heat conduction o One dimensional variable heat conduction with nonvanishing final temperature.

"Sinopsis" puede pertenecer a otra edición de este libro.

Reseña del editor

This book comprises a course in differential equations, which students of engineering, physics, and mathematics complete as a requirement of bachelor in science degree. The reader must possess basic skills in calculus, since all elementary differentiations and integrations in this book assume that the student could visually spot the derivation from previous years in high school or college. The book is organized in the logical fashion as presented to college students. The ordinary differential equations (o.d.e.) are first studied in great details, since partial differential equations (p.d.e.) must be rendered ordinary by separation of variables so as yield meaningful solution. When separation of variables is untenable (such as in nonlinear partial differential equations), then referrals to numerical solutions are given. Within the scope of o.d.e., first- and second-order differential equations are discussed in details, also since equations of higher orders could be reduced in order by successive methods of substitutions, discussed in the book. Also, within the scope of o.d.e., equations with constant coefficients are dealt with greater details, since variable coefficients could be rendered constants by interim substitutions and reverse substations. Also, dealt with is the reduction of higher degrees of variables to lesser degrees. The following is a brief outline of the topics discussed in the book: Separable exact o.d.e o Homogeneous first-order o.d.e. o Homogenizing first-order o.d.e. with quadratic polynomial o Condition for a total derivative o Solving first-order o.d.e. by integrating factor o Solving first-order o.d.e. by product of two arbitrary functions g(x)f(x) o Solving first-order o.d.e. of higher degree by reduction of degree followed by using product of two arbitrary functions g(x)f(x) o Solving first-order o.d.e. of 2nd-degree by means of quadratic roots. o Solving first-order o.d.e. of 2nd-degree by substitutive reduction to 1st-degree o Parametric integration of first-order o.d.e. of 2nd-degree to express y in terms of powers in y'. o General solution of Clairaut’s equation. o General solution of Lagrange’s equation. o Orthogonal curves of fluid flow. o Orthogonal projection of curves. o Isogonal projection of curves. o Solution of second-order o.d.e. by reducing it to first-order o Solution of second-order o.d.e. and higher degree by reducing it to first-order. o Conditions required for general solution of homogeneous o.d.e. o Reducing order of o.d.e. when a particular solution is know. o Characteristic equations and solution of 2nd-order o.d.e. by D-Operator. o Characteristic equations and solution of 2nd-order o.d.e. with complex roots. o General and particular solutions of the non-homogenous 2nd-order o.d.e. o Integrating 4th-order nonhomogeneous o.d.e. with sine function by using the Inverse D-Operator. o Simultaneous solution of 1st-order o.d.e. o Simultaneous solution of 2nd-order o.d.e. o Order reduction of 3rd-order nonhomogeneous o.d.e. by known particular solution o Solving 2nd-order o.d.e by product of two arbitrary functions g(x)f(x). o Solution of 2nd-order nonhomogenous o.d.e. by the method of variable parameters o Solution by the method of change of the independent variable x o Solution of 2nd-order o.d.e. by power series. o Solution of 2nd-order o.d.e. by power series by Frobenius’s method. o Airy-Lévy’s equation o Elastic Vibration o Heat Equation o Laplace Equation o Wave Equation o Free oscillation or homogeneous o.d.e. o Forced oscillation or nonhomogeneous o.d.e. o Euler’s elastic bending problem. o Whirling of elastic rod. o Transverse wave transmission in a vertical elastic body. o Propagation of sound waves in gas medium. o Flow of electricity in wire. o Telegraph Equations: o Radio Equations o Heat conducting plate with rectangular cross-section. o One dimensional variable heat conduction o One dimensional variable heat conduction with nonvanishing final temperature.

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar nuevo

Ver este artículo

EUR 6,90 gastos de envío desde Estados Unidos de America a España

Destinos, gastos y plazos de envío

Resultados de la búsqueda para Ordinary and Partial Differential Equations: Third...

Imagen de archivo

El-Hewie, Mohamed F.
ISBN 10: 1492220183 ISBN 13: 9781492220183
Nuevo Tapa blanda
Impresión bajo demanda

Librería: California Books, Miami, FL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Print on Demand. Nº de ref. del artículo: I-9781492220183

Contactar al vendedor

Comprar nuevo

EUR 24,88
Convertir moneda
Gastos de envío: EUR 6,90
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Mohamed F El-Hewie
ISBN 10: 1492220183 ISBN 13: 9781492220183
Nuevo Paperback / softback
Impresión bajo demanda

Librería: THE SAINT BOOKSTORE, Southport, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 475. Nº de ref. del artículo: C9781492220183

Contactar al vendedor

Comprar nuevo

EUR 31,68
Convertir moneda
Gastos de envío: EUR 7,37
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Mohamed F. El-Hewie
ISBN 10: 1492220183 ISBN 13: 9781492220183
Nuevo Paperback

Librería: CitiRetail, Stevenage, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: new. Paperback. This book comprises a course in differential equations, which students of engineering, physics, and mathematics complete as a requirement of bachelor in science degree. The reader must possess basic skills in calculus, since all elementary differentiations and integrations in this book assume that the student could visually spot the derivation from previous years in high school or college. The book is organized in the logical fashion as presented to college students. The ordinary differential equations (o.d.e.) are first studied in great details, since partial differential equations (p.d.e.) must be rendered ordinary by separation of variables so as yield meaningful solution. When separation of variables is untenable (such as in nonlinear partial differential equations), then referrals to numerical solutions are given. Within the scope of o.d.e., first- and second-order differential equations are discussed in details, also since equations of higher orders could be reduced in order by successive methods of substitutions, discussed in the book. Also, within the scope of o.d.e., equations with constant coefficients are dealt with greater details, since variable coefficients could be rendered constants by interim substitutions and reverse substations. Also, dealt with is the reduction of higher degrees of variables to lesser degrees. The following is a brief outline of the topics discussed in the book: Separable exact o.d.e oHomogeneous first-order o.d.e. oHomogenizing first-order o.d.e. with quadratic polynomial oCondition for a total derivative oSolving first-order o.d.e. by integrating factor oSolving first-order o.d.e. by product of two arbitrary functions g(x)f(x) oSolving first-order o.d.e. of higher degree by reduction of degree followed by using product of two arbitrary functions g(x)f(x) oSolving first-order o.d.e. of 2nd-degree by means of quadratic roots. oSolving first-order o.d.e. of 2nd-degree by substitutive reduction to 1st-degree oParametric integration of first-order o.d.e. of 2nd-degree to express y in terms of powers in y'. oGeneral solution of Clairaut's equation. oGeneral solution of Lagrange's equation. oOrthogonal curves of fluid flow. oOrthogonal projection of curves. oIsogonal projection of curves. oSolution of second-order o.d.e. by reducing it to first-order oSolution of second-order o.d.e. and higher degree by reducing it to first-order. oConditions required for general solution of homogeneous o.d.e. oReducing order of o.d.e. when a particular solution is know. oCharacteristic equations and solution of 2nd-order o.d.e. by D-Operator. oCharacteristic equations and solution of 2nd-order o.d.e. with complex roots. oGeneral and particular solutions of the non-homogenous 2nd-order o.d.e. oIntegrating 4th-order nonhomogeneous o.d.e. with sine function by using the Inverse D-Operator. oSimultaneous solution of 1st-order o.d.e. oSimultaneous solution of 2nd-order o.d.e. oOrder reduction of 3rd-order nonhomogeneous o.d.e. by known particular solution oSolving 2nd-order o.d.e by product of two arbitrary functions g(x)f(x). oSolution of 2nd-order nonhomogenous o.d.e. by the method of variable parameters oSolution by the method of change of the independent variable x oSolution of 2nd-order o.d.e. by power series. oSolution of 2nd-order o.d.e. by power series by Frobenius's method. oAiry-Levy's equation oElastic Vibration oHeat Equation oLaplace Equation oWave Equation oFree oscillation or homogeneous o.d.e. oForced oscillation or nonhomogeneous o.d.e. oEuler's elastic bending problem. oWhirling of elastic rod. oTransverse wave transmission in a vertical elastic body. oPropagation of sound waves in gas medium. oFlow of electricity in wire. oTelegraph Equations: oRadio Equations oHeat conducting plate with rectangular cross-section. oOne dimensional variable heat conduction oOne dimensional vari Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Nº de ref. del artículo: 9781492220183

Contactar al vendedor

Comprar nuevo

EUR 33,62
Convertir moneda
Gastos de envío: EUR 34,38
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

El-Hewie, Mohamed F.
ISBN 10: 1492220183 ISBN 13: 9781492220183
Nuevo Tapa blanda

Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: ABLING22Oct2817100042263

Contactar al vendedor

Comprar nuevo

EUR 21,52
Convertir moneda
Gastos de envío: EUR 64,71
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito