If you're training a machine learning model but aren't sure how to put it into production, this book will get you there. Kubeflow provides a collection of cloud native tools for different stages of a model's lifecycle, from data exploration, feature preparation, and model training to model serving. This guide helps data scientists build production-grade machine learning implementations with Kubeflow and shows data engineers how to make models scalable and reliable.
Using examples throughout the book, authors Holden Karau, Trevor Grant, Ilan Filonenko, Richard Liu, and Boris Lublinsky explain how to use Kubeflow to train and serve your machine learning models on top of Kubernetes in the cloud or in a development environment on-premises.
"Sinopsis" puede pertenecer a otra edición de este libro.
Trevor Grant is a member of the Apache Software Foundation, and is heavily involved in the Apache Mahout, Apache Streams, and Community Development projects. He often tinkers and occasionally documents his (mis)adventures at www.rawkintrevo.org. In the before time, he was an international speaker on technology, but now he focuses mainly on writing. Trevor wishes to thank IBM for their continued patronage of his artistic endeavors. He lives in Chicago because it's the best city on the planet, with world class food, parks, and culture, and because the skies are never orange. Holden Karau is a queer transgender Canadian, Apache Spark committer, Apache Software Foundation member, and an active open source contributor. She also extends her passion for building community with industry projects including Scaling for Python for ML and teaching distributed computing to children. As a software engineer, she's worked on a variety of distributed compute, search, and classification problems at Google, IBM, Alpine, Databricks, Foursquare, and Amazon. She graduated from the University of Waterloo with a bachelor of mathematics in computer science. Outside of software she enjoys playing with fire, welding, riding scooters, eating poutine, and dancing. Boris Lublinsky is a Principal Architect at Lightbend. Boris has over 25 years experience in enterprise, technical architecture, and software engineering. He is an active member of OASIS SOA RM committee, co-author of Applied SOA: Service-Oriented Architecture and Design Strategies (Wiley) and author of numerous articles on Architecture, Programming, Big Data, SOA and BPM. Richard Liu is a Senior Software Engineer at Waymo, where he focuses on building a machine learning platform for self-driving cars. Previously he has worked at Microsoft Azure and Google Cloud. He is one of the primary maintainers of the Kubeflow project and has given several talks at KubeCon. He holds a Master's degree in Computer Science from University of California, San Diego. Ilan Filonenko is a member of the Data Science Infrastructure team at Bloomberg, where he has designed and implemented distributed systems at both the application and infrastructure level. He is one of the principal contributors to Spark on Kubernetes, primarily focusing on the effort to enabled Secure HDFS interaction and non-JVM support. Previously, Ilan was an engineering consultant and technical lead in various startups and research divisions across multiple industry verticals, including medicine, hospitality, finance, and music. Ilan's research has focused on algorithmic, software, and hardware techniques for high-performance machine learning with a particular interest in optimizing stochastic algorithms, convolutional sequence-to-sequence models, multi-task learning for deep text recommendations, and model management.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 6,93 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoEUR 3,41 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoLibrería: WorldofBooks, Goring-By-Sea, WS, Reino Unido
Paperback. Condición: Very Good. The book has been read, but is in excellent condition. Pages are intact and not marred by notes or highlighting. The spine remains undamaged. Nº de ref. del artículo: GOR014299732
Cantidad disponible: 1 disponibles
Librería: Greener Books, London, Reino Unido
Paperback. Condición: Used; Very Good. **SHIPPED FROM UK** We believe you will be completely satisfied with our quick and reliable service. All orders are dispatched as swiftly as possible! Buy with confidence! Greener Books. Nº de ref. del artículo: 4881341
Cantidad disponible: 1 disponibles
Librería: Bahamut Media, Reading, Reino Unido
paperback. Condición: Very Good. This book is in very good condition and will be shipped within 24 hours of ordering. The cover may have some limited signs of wear but the pages are clean, intact and the spine remains undamaged. This book has clearly been well maintained and looked after thus far. Money back guarantee if you are not satisfied. See all our books here, order more than 1 book and get discounted shipping. Nº de ref. del artículo: 6545-9781492050124
Cantidad disponible: 1 disponibles
Librería: AwesomeBooks, Wallingford, Reino Unido
paperback. Condición: Very Good. Machine Learning Fundamentals with Kubeflow: From Lab to Production This book is in very good condition and will be shipped within 24 hours of ordering. The cover may have some limited signs of wear but the pages are clean, intact and the spine remains undamaged. This book has clearly been well maintained and looked after thus far. Money back guarantee if you are not satisfied. See all our books here, order more than 1 book and get discounted shipping. Nº de ref. del artículo: 7719-9781492050124
Cantidad disponible: 1 disponibles
Librería: Rarewaves USA, OSWEGO, IL, Estados Unidos de America
Paperback. Condición: New. If you're training a machine learning model but aren't sure how to put it into production, this book will get you there. Kubeflow provides a collection of cloud native tools for different stages of a model's lifecycle, from data exploration, feature preparation, and model training to model serving. This guide helps data scientists build production-grade machine learning implementations with Kubeflow and shows data engineers how to make models scalable and reliable.Using examples throughout the book, authors Holden Karau, Trevor Grant, Ilan Filonenko, Richard Liu, and Boris Lublinsky explain how to use Kubeflow to train and serve your machine learning models on top of Kubernetes in the cloud or in a development environment on-premises. Understand Kubeflow's design, core components, and the problems it solvesLearn how to set up Kubeflow on a cloud provider or on an in-house clusterTrain models using Kubeflow with popular tools including scikit-learn, TensorFlow, and Apache SparkLearn how to add custom stages such as serving and predictionKeep your model up-to-date with Kubeflow PipelinesUnderstand how to validate machine learning pipelines. Nº de ref. del artículo: LU-9781492050124
Cantidad disponible: Más de 20 disponibles
Librería: Speedyhen, London, Reino Unido
Condición: NEW. Nº de ref. del artículo: NW9781492050124
Cantidad disponible: 2 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: GB-9781492050124
Cantidad disponible: 2 disponibles
Librería: Rarewaves USA United, OSWEGO, IL, Estados Unidos de America
Paperback. Condición: New. If you're training a machine learning model but aren't sure how to put it into production, this book will get you there. Kubeflow provides a collection of cloud native tools for different stages of a model's lifecycle, from data exploration, feature preparation, and model training to model serving. This guide helps data scientists build production-grade machine learning implementations with Kubeflow and shows data engineers how to make models scalable and reliable.Using examples throughout the book, authors Holden Karau, Trevor Grant, Ilan Filonenko, Richard Liu, and Boris Lublinsky explain how to use Kubeflow to train and serve your machine learning models on top of Kubernetes in the cloud or in a development environment on-premises. Understand Kubeflow's design, core components, and the problems it solvesLearn how to set up Kubeflow on a cloud provider or on an in-house clusterTrain models using Kubeflow with popular tools including scikit-learn, TensorFlow, and Apache SparkLearn how to add custom stages such as serving and predictionKeep your model up-to-date with Kubeflow PipelinesUnderstand how to validate machine learning pipelines. Nº de ref. del artículo: LU-9781492050124
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781492050124_new
Cantidad disponible: 2 disponibles
Librería: Wonder Book, Frederick, MD, Estados Unidos de America
Condición: Very Good. Very Good condition. A copy that may have a few cosmetic defects. May also contain light spine creasing or a few markings such as an owner's name, short gifter's inscription or light stamp. Nº de ref. del artículo: E17B-02198
Cantidad disponible: 1 disponibles