Data is bigger, arrives faster, and comes in a variety of formatsâ and it all needs to be processed at scale for analytics or machine learning. But how can you process such varied workloads efficiently? Enter Apache Spark.
Updated to include Spark 3.0, this second edition shows data engineers and data scientists why structure and unification in Spark matters. Specifically, this book explains how to perform simple and complex data analytics and employ machine learning algorithms. Through step-by-step walk-throughs, code snippets, and notebooks, youâ ll be able to:
"Sinopsis" puede pertenecer a otra edición de este libro.
Jules S. Damji is an Apache Spark Community and Developer Advocate at Databricks. He is a hands-on developer with over 20 years of experience and has worked at leading companies, such as Sun Microsystems, Netscape, @Home, LoudCloud/Opsware, VeriSign, ProQuest, and Hortonworks, building large-scale distributed systems. He holds a B.Sc and M.Sc in Computer Science and MA in Political Advocacy and Communication from Oregon State University, Cal State, and Johns Hopkins University respectively. Denny Lee is a Technical Product Manager at Databricks. He is a hands-on distributed systems and data sciences engineer with extensive experience developing internet-scale infrastructure, data platforms, and predictive analytics systems for both on-premise and cloud environments. He also has a Masters of Biomedical Informatics from Oregon Health and Sciences University and has architected and implemented powerful data solutions for enterprise Healthcare customers. His current technical focuses include Distributed Systems, Apache Spark, Deep Learning, Machine Learning, and Genomics. Brooke Wenig is the Machine Learning Practice Lead at Databricks. She guides and assists customers in implementing machine learning pipelines, as well as teaching Distributed Machine Learning & Deep Learning courses. She received an MS in Computer Science from UCLA with a focus on distributed machine learning. She speaks Mandarin Chinese fluently and enjoys cycling. Tathagata Das is an Apache Spark committer and a member of the PMC. He's the lead developer behind Spark Streaming and currently develops Structured Streaming. Previously, he was a grad student in the UC Berkeley at AMPLab, where he conducted research about data-center frameworks and networks with Scott Shenker and Ion Stoica.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 5,50 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoEUR 4,29 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: WO-9781492050049
Cantidad disponible: 15 disponibles
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: WO-9781492050049
Cantidad disponible: 15 disponibles
Librería: medimops, Berlin, Alemania
Condición: very good. Gut/Very good: Buch bzw. Schutzumschlag mit wenigen Gebrauchsspuren an Einband, Schutzumschlag oder Seiten. / Describes a book or dust jacket that does show some signs of wear on either the binding, dust jacket or pages. Nº de ref. del artículo: M01492050040-V
Cantidad disponible: 3 disponibles
Librería: medimops, Berlin, Alemania
Condición: good. Befriedigend/Good: Durchschnittlich erhaltenes Buch bzw. Schutzumschlag mit Gebrauchsspuren, aber vollständigen Seiten. / Describes the average WORN book or dust jacket that has all the pages present. Nº de ref. del artículo: M01492050040-G
Cantidad disponible: 1 disponibles
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
Paperback or Softback. Condición: New. Learning Spark: Lightning-Fast Data Analytics 1.4. Book. Nº de ref. del artículo: BBS-9781492050049
Cantidad disponible: 5 disponibles
Librería: Rarewaves USA, OSWEGO, IL, Estados Unidos de America
Paperback. Condición: New. Data is getting bigger, arriving faster, and coming in varied formats-and it all needs to be processed at scale for analytics or machine learning. How can you process such varied data workloads efficiently? Enter Apache Spark. Updated to emphasize new features in Spark 2.4., this second edition shows data engineers and scientists why structure and unification in Spark matters. Specifically, this book explains how to perform simple and complex data analytics and employ machine-learning algorithms. Through discourse, code snippets, and notebooks, you'll be able to: Learn Python, SQL, Scala, or Java high-level APIs: DataFrames and Datasets Peek under the hood of the Spark SQL engine to understand Spark transformations and performance Inspect, tune, and debug your Spark operations with Spark configurations and Spark UI Connect to data sources: JSON, Parquet, CSV, Avro, ORC, Hive, S3, or Kafka Perform analytics on batch and streaming data using Structured Streaming Build reliable data pipelines with open source Delta Lake and Spark Develop machine learning pipelines with MLlib and productionize models using MLflow Use open source Pandas framework Koalas and Spark for data transformation and feature engineering. Nº de ref. del artículo: LU-9781492050049
Cantidad disponible: Más de 20 disponibles
Librería: SecondSale, Montgomery, IL, Estados Unidos de America
Condición: Very Good. Item in very good condition! Textbooks may not include supplemental items i.e. CDs, access codes etc. Nº de ref. del artículo: 00089955498
Cantidad disponible: 1 disponibles
Librería: SecondSale, Montgomery, IL, Estados Unidos de America
Condición: Good. Item in good condition. Textbooks may not include supplemental items i.e. CDs, access codes etc. Nº de ref. del artículo: 00085087939
Cantidad disponible: 3 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9781492050049
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 35911240-n
Cantidad disponible: Más de 20 disponibles