Many industry experts consider unsupervised learning the next frontier in artificial intelligence, one that may hold the key to general artificial intelligence. Since the majority of the world's data is unlabeled, conventional supervised learning cannot be applied. Unsupervised learning, on the other hand, can be applied to unlabeled datasets to discover meaningful patterns buried deep in the data, patterns that may be near impossible for humans to uncover.
Author Ankur Patel shows you how to apply unsupervised learning using two simple, production-ready Python frameworks: Scikit-learn and TensorFlow using Keras. With code and hands-on examples, data scientists will identify difficult-to-find patterns in data and gain deeper business insight, detect anomalies, perform automatic feature engineering and selection, and generate synthetic datasets. All you need is programming and some machine learning experience to get started.
"Sinopsis" puede pertenecer a otra edición de este libro.
Ankur Patel is an applied machine learning researcher and data scientist with expertise in financial markets. His work focuses on unsupervised learning, natural language processing, time series prediction, and sequential data problems. Currently, Ankur finds hidden patterns in large-scale unlabeled data for clients around the world as a data scientist at ThetaRay, an Israeli artificial intelligence firm. Ankur started his career as the lead emerging markets trader at Bridgewater Associates and later founded and managed the machine learning-based hedge fund R-Squared Macro.
"Sobre este título" puede pertenecer a otra edición de este libro.
GRATIS gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoEUR 3,65 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: Bay State Book Company, North Smithfield, RI, Estados Unidos de America
Condición: very_good. Nº de ref. del artículo: BSM.T4A5
Cantidad disponible: 1 disponibles
Librería: WorldofBooks, Goring-By-Sea, WS, Reino Unido
Paperback. Condición: Very Good. The book has been read, but is in excellent condition. Pages are intact and not marred by notes or highlighting. The spine remains undamaged. Nº de ref. del artículo: GOR011826507
Cantidad disponible: 1 disponibles
Librería: Patrico Books, Apollo Beach, FL, Estados Unidos de America
paperback. Condición: Good. Ships Out Tomorrow! Nº de ref. del artículo: 250710054
Cantidad disponible: 1 disponibles
Librería: GoldBooks, Denver, CO, Estados Unidos de America
Condición: new. Nº de ref. del artículo: 40A28_22_1492035645
Cantidad disponible: 1 disponibles
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
Paperback or Softback. Condición: New. Hands-On Unsupervised Learning Using Python: How to Build Applied Machine Learning Solutions from Unlabeled Data. Book. Nº de ref. del artículo: BBS-9781492035640
Cantidad disponible: 5 disponibles
Librería: Lakeside Books, Benton Harbor, MI, Estados Unidos de America
Condición: New. Brand New! Not Overstocks or Low Quality Book Club Editions! Direct From the Publisher! We're not a giant, faceless warehouse organization! We're a small town bookstore that loves books and loves it's customers! Buy from Lakeside Books! Nº de ref. del artículo: OTF-S-9781492035640
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 34645111-n
Cantidad disponible: 2 disponibles
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: WO-9781492035640
Cantidad disponible: 2 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar2716030177631
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: WO-9781492035640
Cantidad disponible: 2 disponibles