Much of the data available today is unstructured and text-heavy, making it challenging for analysts to apply their usual data wrangling and visualization tools. With this practical book, you'll explore text-mining techniques with tidytext, a package that authors Julia Silge and David Robinson developed using the tidy principles behind R packages like ggraph and dplyr. You'll learn how tidytext and other tidy tools in R can make text analysis easier and more effective.
The authors demonstrate how treating text as data frames enables you to manipulate, summarize, and visualize characteristics of text. You'll also learn how to integrate natural language processing (NLP) into effective workflows. Practical code examples and data explorations will help you generate real insights from literature, news, and social media.
"Sinopsis" puede pertenecer a otra edición de este libro.
Julia Silge is a data scientist at Datassist where her work involves analyzing and modeling complex data sets while communicating about technical topics with diverse audiences. She has a PhD in Astrophysics, as well as abiding affections for Jane Austen and making beautiful charts. Julia worked in academia and ed tech before moving into data science and discovering R. David Robinson is a data scientist at Stack Overflow. He has a PhD in Quantitative and Computational Biology from Princeton University, where he worked with Professor John Storey on genomic analysis. He enjoys working and blogging about statistics, R programming, and text mining, including a popular analysis of Donald Trump's twitter account (performed according to the tidy data principles described in this book).
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 6,95 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoEUR 0,75 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoLibrería: WorldofBooks, Goring-By-Sea, WS, Reino Unido
Paperback. Condición: Fine. Nº de ref. del artículo: GOR013340303
Cantidad disponible: 1 disponibles
Librería: Better World Books, Mishawaka, IN, Estados Unidos de America
Condición: Good. Used book that is in clean, average condition without any missing pages. Nº de ref. del artículo: 41117179-6
Cantidad disponible: 4 disponibles
Librería: Wonder Book, Frederick, MD, Estados Unidos de America
Condición: Very Good. Very Good condition. A copy that may have a few cosmetic defects. May also contain light spine creasing or a few markings such as an owner's name, short gifter's inscription or light stamp. Nº de ref. del artículo: L04Q-00580
Cantidad disponible: 1 disponibles
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: WO-9781491981658
Cantidad disponible: 6 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: WO-9781491981658
Cantidad disponible: 6 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: good. May show signs of wear, highlighting, writing, and previous use. This item may be a former library book with typical markings. No guarantee on products that contain supplements Your satisfaction is 100% guaranteed. Twenty-five year bookseller with shipments to over fifty million happy customers. Nº de ref. del artículo: 28899337-5
Cantidad disponible: 3 disponibles
Librería: Rarewaves USA, OSWEGO, IL, Estados Unidos de America
Paperback. Condición: New. Tackle a variety of tasks in natural language processing by learning how to use the R language and tidy data principles. This practical guide provides examples and resources to help you get up to speed with dplyr, broom, ggplot2, and other tidy tools from the R ecosystem. You'll discover how tidy data principles can make text mining easier, more effective, and consistent by employing tools already in wide use. Text Mining with R shows you how to manipulate, summarize, and visualize the characteristics of text, sentiment analysis, tf-idf, and topic modeling. Along with tidy data methods, you'll also examine several beginning-to-end tidy text analyses on data sources from Twitter to NASA datasets. These analyses bring together multiple text mining approaches covered in the book. Get real-world examples for implementing text mining using tidy R package Understand natural language processing concepts like sentiment analysis, tf-idf, and topic modeling Learn how to analyze unstructured, text-heavy data using R language and ecosystem. Nº de ref. del artículo: LU-9781491981658
Cantidad disponible: Más de 20 disponibles
Librería: medimops, Berlin, Alemania
Condición: very good. Gut/Very good: Buch bzw. Schutzumschlag mit wenigen Gebrauchsspuren an Einband, Schutzumschlag oder Seiten. / Describes a book or dust jacket that does show some signs of wear on either the binding, dust jacket or pages. Nº de ref. del artículo: M01491981652-V
Cantidad disponible: 1 disponibles
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
Paperback or Softback. Condición: New. Text Mining with R: A Tidy Approach 0.6. Book. Nº de ref. del artículo: BBS-9781491981658
Cantidad disponible: 5 disponibles
Librería: Rarewaves USA United, OSWEGO, IL, Estados Unidos de America
Paperback. Condición: New. Tackle a variety of tasks in natural language processing by learning how to use the R language and tidy data principles. This practical guide provides examples and resources to help you get up to speed with dplyr, broom, ggplot2, and other tidy tools from the R ecosystem. You'll discover how tidy data principles can make text mining easier, more effective, and consistent by employing tools already in wide use. Text Mining with R shows you how to manipulate, summarize, and visualize the characteristics of text, sentiment analysis, tf-idf, and topic modeling. Along with tidy data methods, you'll also examine several beginning-to-end tidy text analyses on data sources from Twitter to NASA datasets. These analyses bring together multiple text mining approaches covered in the book. Get real-world examples for implementing text mining using tidy R package Understand natural language processing concepts like sentiment analysis, tf-idf, and topic modeling Learn how to analyze unstructured, text-heavy data using R language and ecosystem. Nº de ref. del artículo: LU-9781491981658
Cantidad disponible: Más de 20 disponibles